toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ellis, J.; Gomez, M.E.; Lola, S.; Ruiz de Austri, R.; Shafi, Q. url  doi
openurl 
  Title Confronting grand unification with lepton flavour violation, dark matter and LHC data Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 197 - 29pp  
  Keywords (down) Supersymmetry Phenomenology  
  Abstract We explore possible signatures for charged lepton flavour violation (LFV), sparticle discovery at the LHC and dark matter (DM) searches in grand unified theories (GUTs) based on SU(5), flipped SU(5) (FSU(5)) and SU(4)(c) x SU(2)(L) x SU(2)(R) (4-2-2). We assume that soft supersymmetry-breaking terms preserve the group symmetry at some high input scale, and focus on the non-universal effects on different matter representations generated by gauge interactions at lower scales, as well as the charged LFV induced in Type-1 see-saw models of neutrino masses. We identify the different mechanisms that control the relic DM density in the various GUT models, and contrast their LFV and LHC signatures. The SU(5) and 4-2-2 models offer good detection prospects both at the LHC and in LFV searches, though with different LSP compositions, and the SU(5) and FSU(5) models offer LFV within the current reach. The 4-2-2 model allows chargino and gluino coannihilations with neutralinos, and the former offer good detection prospects for both the LHC and LFV, while gluino coannihilations lead to lower LFV rates. Our results indicate that LFV is a powerful tool that complements LHC and DM searches, providing significant insights into the sparticle spectra and neutrino mass parameters in different models.  
  Address [Ellis, J.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: John.Ellis@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576973000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4566  
Permanent link to this record
 

 
Author Schiavone, T.; Montani, G.; Bombacigno, F. url  doi
openurl 
  Title f(R) gravity in the Jordan frame as a paradigm for the Hubble tension Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 522 Issue 1 Pages L72-L77  
  Keywords (down) supernovae: general; galaxies: distances and redshifts; cosmological parameters; dark energy; cosmology: theory  
  Abstract We analyse the f(R) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the present study is to show that according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled scalar field, as it emerges in the f(R) gravity. We face the question both from an analytical and purely numerical point of view, following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift z is ensured by a form of the scalar field potential, which remains essentially constant for z less than or similar to 0.3, independently if this request is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we demonstrate that an f(R) dark energy model is able to account for an apparent variation of the Hubble constant due to the rescaling of the Einstein constant by the f(R) scalar mode.  
  Address [Schiavone, Tiziano] Univ Pisa, Dept Phys Fermi, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy, Email: tschiavone@fc.ul.pt  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001066034100015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5672  
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Mena, O.; Vagnozzi, S. url  doi
openurl 
  Title Soundness of dark energy properties Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 045 - 45pp  
  Keywords (down) supernova type Ia – standard candles; dark energy experiments; cosmological parameters from CMBR; cosmological parameters from LSS  
  Abstract Type Ia Supernovae (SNeIa) used as standardizable candles have been instrumental in the discovery of cosmic acceleration, usually attributed to some form of dark energy (DE). Recent studies have raised the issue of whether intrinsic SNeIa luminosities might evolve with redshift. While the evidence for cosmic acceleration is robust to this possible systematic, the question remains of how much the latter can affect the inferred properties of the DE component responsible for cosmic acceleration. This is the question we address in this work. We use SNeIa distance moduli measurements from the Pantheon and JLA samples. We consider models where the DE equation of state is a free parameter, either constant or time-varying, as well as models where DE and dark matter interact, and finally a model-agnostic parametrization of effects due to modified gravity (MG). When SNeIa data are combined with Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements, we find strong degeneracies between parameters governing the SNeIa systematics, the DE parameters, and the Hubble constant H-0. These degeneracies significantly broaden the DE parameter uncertainties, in some cases leading to O(sigma) shifts in the central values. However, including low-redshift Baryon Acoustic Oscillation and Cosmic Chronometer measurements, as well as CMB lensing measurements, considerably improves the previous constraints, and the only remaining effect of the examined systematic is a less than or similar to 40% broadening of the uncertainties on the DE parameters. The constraints we derive on the MG parameters are instead basically unaffected by the systematic in question. We therefore confirm the overall soundness of dark energy properties.  
  Address [Di Valentino, Eleonora] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@mancher.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551883400049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4475  
Permanent link to this record
 

 
Author Al Kharusi, S. et al; Colomer, M. url  doi
openurl 
  Title SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy Type Journal Article
  Year 2021 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 23 Issue 3 Pages 031201 - 34pp  
  Keywords (down) supernova neutrinos; multi-messenger astronomy; particle astrophysics  
  Abstract The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.  
  Address [Al Kharusi, S.; Brunner, T.; Haggard, D.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada, Email: ahabig@d.umn.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000629947000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4756  
Permanent link to this record
 

 
Author Abbar, S.; Capozzi, F. url  doi
openurl 
  Title Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 051 - 13pp  
  Keywords (down) supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas  
  Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.  
  Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776551600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5186  
Permanent link to this record
 

 
Author Marinas, C.; Vos, M. doi  openurl
  Title The Belle-II DEPFET pixel detector: A step forward in vertexing in the superKEKB flavour factory Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 650 Issue 1 Pages 59-63  
  Keywords (down) SuperKEKB; Belle-II; DEPFET; Pixel detector; ASIC; Mechanics; Cooling; Resolution  
  Abstract An upgrade of the successful asymmetric e(+)e(-) collider in KEK (Tsukuba, Japan) is foreseen by the fall of 2013. This new Super Flavor Factory will deliver an increased instantaneous luminosity of up to L = 8 x 10(35) cm(-2) s(-1), 40 times larger than the current KEKB machine. To exploit these new conditions and provide high precision measurements of the decay vertex of the B meson systems, a new silicon vertex detector will be operated in Belle. This new detector will consist of two layers of DEPFET Active Pixel Sensors as close as possible to the interaction point. DEPFET is a field effect transistor, with an additional deep implant underneath the channel's gate, integrated on a completely depleted bulk. This technology offers detection and an in-pixel amplification stage, while keeping low the power consumption. Under these conditions, thin sensors with small pixel size and low intrinsic noise are possible. In this article, an overview of the full system will be described, including the sensor, the front-end electronics and both the mechanical and thermal proposed solutions as well as the expected performance.  
  Address [Marinas, C; Vos, M] CSIC UVEG, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: Carlos.Marinas.Pardo@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295106500015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 768  
Permanent link to this record
 

 
Author Fioresi, R.; Lledo, M.A.; Razzaq, J. url  doi
openurl 
  Title N=2 quantum chiral superfields and quantum super bundles Type Journal Article
  Year 2022 Publication Journal of Physics A Abbreviated Journal J. Phys. A  
  Volume 55 Issue 38 Pages 384012 - 19pp  
  Keywords (down) supergeometry; supersymmetry; quantum groups; noncommutative geometry; Minkowski space  
  Abstract We give the superalgebra of N = 2 chiral (and antichiral) quantum superfields realized as a subalgebra of the quantum supergroup SL q (4|2). The multiplication law in the quantum supergroup induces a coaction on the set of chiral superfields. We also realize the quantum deformation of the chiral Minkowski superspace as a quantum principal bundle.  
  Address [Fioresi, R.] Univ Bologna, Fabit, Via San Donato 15, I-40126 Bologna, Italy, Email: rita.fioresi@unibo.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-8113 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000849946700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5351  
Permanent link to this record
 

 
Author Lledo, M.A. url  doi
openurl 
  Title Superfields, Nilpotent Superfields and Superschemes dagger Type Journal Article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 6 Pages 1024 - 32pp  
  Keywords (down) supergeometry; superfields; quantum field theory  
  Abstract We interpret superfields in a functorial formalism that explains the properties that are assumed for them in the physical applications. We study the non-trivial relation of scalar superfields with the defining sheaf of the supermanifold of super spacetime. We also investigate in the present work some constraints that are imposed on the superfields, which allow for non-trivial solutions. They give rise to superschemes that, generically, are not regular, that is they do not define a standard supermanifold.  
  Address [Antonia Lledo, Maria] Univ Valencia, Dept Fis Teor, C Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: maria.lledo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000550827300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4468  
Permanent link to this record
 

 
Author Linowski, T.; Schlichtholz, K.; Sorelli, G.; Gessner, M.; Walschaers, M.; Treps, N.; Rudnicki, L. url  doi
openurl 
  Title Application range of crosstalk-affected spatial demultiplexing for resolving separations between unbalanced sources Type Journal Article
  Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 25 Issue 10 Pages 103050 - 13pp  
  Keywords (down) super resolution; spatial demultiplexing; crosstalk; unbalanced sources; Fisher information; measurement precision  
  Abstract Super resolution is one of the key issues at the crossroads of contemporary quantum optics and metrology. Recently, it was shown that for an idealized case of two balanced sources, spatial mode demultiplexing (SPADE) achieves resolution better than direct imaging even in the presence of measurement crosstalk (Gessner et al 2020 Phys. Rev. Lett. 125 100501). In this work, we consider arbitrarily unbalanced sources and provide a systematic analysis of the impact of crosstalk on the resolution obtained from SPADE. As we dissect, in this generalized scenario, SPADE's effectiveness depends non-trivially on the strength of crosstalk, relative brightness and the separation between the sources. In particular, for any source imbalance, SPADE performs worse than ideal direct imaging in the asymptotic limit of vanishing source separations. Nonetheless, for realistic values of crosstalk strength, SPADE is still the superior method for several orders of magnitude of source separations.  
  Address [Linowski, Tomasz; Schlichtholz, Konrad; Rudnicki, Lukasz] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland, Email: t.linowski95@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001119385500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5844  
Permanent link to this record
 

 
Author Bordes, J.; Dominguez, C.A.; Moodley, P.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Corrections to the SU(3) x SU(3) Gell-Mann-Oakes-Renner relation and chiral couplings L-8(r) and H-r(2) Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 102 - 11pp  
  Keywords (down) Sum Rules; QCD  
  Abstract Next to leading order corrections to the SU(3) x SU(3) Gell-Mann-OakesRenner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is psi(5)(0) = (2.8 +/- 0.3) x 10(-3) GeV4, leading to the chiral corrections to GMOR: delta(K) = (55 +/- 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2) x SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2) x SU(2), delta(pi), we are able to determine two low energy constants of chiral perturbation theory, i.e. L-8(r) = (1.0 +/- 0.3) x 10(-3), and H-2(r) = -(4.7 +/- 0.6) x 10(-3), both at the scale of the rho-meson mass.  
  Address [Bordes, J.; Penarrocha, J.] Univ Valencia, Dept Fis Teor, Valencia, Spain, Email: Jose.M.Bordes@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310851600031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1257  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva