|   | 
Details
   web
Records
Author Rocha-Moran, P.; Vicente, A.
Title Lepton Flavor Violation in the singlet-triplet scotogenic model Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 078 - 25pp
Keywords (down) Neutrino Physics; Beyond Standard Model
Abstract We investigate lepton flavor violation (LFV) in the the singlet-triplet scotogenic model in which neutrinos acquire non-zero masses at the 1-loop level. In contrast to the most popular variant of this setup, the singlet scotogenic model, this version includes a triplet fermion as well as a triplet scalar, leading to a scenario with a richer dark matter phenomenology. Taking into account results from neutrino oscillation experiments, we explore some aspects of the LFV phenomenology of the model. In particular, we study the relative weight of the dipole operators with respect to other contributions to the LFV amplitudes and determine the most constraining observables. We show that in large portions of the parameter space, the most promising experimental perspectives are found for LFV 3-body decays and for coherent mu-e conversion in nuclei.
Address [Rocha-Moran, Paulina; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Apdo 22085, E-46071 Valencia, Spain, Email: procha@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000411315600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3500
Permanent link to this record
 

 
Author Bonilla, C.; Ma, E.; Peinado, E.; Valle, J.W.F.
Title Two-loop Dirac neutrino mass and WIMP dark matter Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 762 Issue Pages 214-218
Keywords (down) Neutrino masses and mixing; Dark matter stability
Abstract We propose a “scotogenic” mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diraconthat induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below m(h)/2.
Address [Bonillaa, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000388473700029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2979
Permanent link to this record
 

 
Author Bonilla, C.; Romao, J.C.; Valle, J.W.F.
Title Electroweak breaking and neutrino mass: `invisible' Higgs decays at the LHC (type II seesaw) Type Journal Article
Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 18 Issue Pages 033033 - 21pp
Keywords (down) neutrino mass; invisible Higgs decays; Higgs physics
Abstract Neutrino mass generation through the Higgs mechanism not only suggests the need to reconsider the physics of electroweak symmetry breaking from a new perspective, but also provides a new theoretically consistent and experimentally viable paradigm. We illustrate this by describing the main features of the electroweak symmetry breaking sector of the simplest type-II seesaw model with spontaneous breaking of lepton number. After reviewing the relevant `theoretical' and astrophysical restrictions on the Higgs sector, we perform an analysis of the sensitivities of Higgs Boson searches at the ongoing ATLAS and CMS experiments at the LHC, including not only the new contributions to the decay channels present in the standard model (SM) but also genuinely non-SM Higgs Boson decays, such as `invisible' Higgs Boson decays to majorons. We find sensitivities that are likely to be reached at the upcoming run of the experiments.
Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000373727500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2621
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo Diaz-Aldagalan, D.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Olcina, I.; Real, D.; Sanchez Garcia, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Letter of intent for KM3NeT 2.0 Type Journal Article
Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 8 Pages 084001 - 130pp
Keywords (down) neutrino astronomy; neutrino physics; deep sea neutrino telescope; neutrino mass hierarchy
Abstract The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.
Address [Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C. D.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gest Integrada Zonas Costeras, C Paranimf 1, E-46730 Gandia, Spain, Email: brunner@cppm.in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000381686700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2773
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.
Title Transit dose comparisons for Co-60 and Ir-192 HDR sources Type Journal Article
Year 2016 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.
Volume 36 Issue 4 Pages 858-864
Keywords (down) Monte Carlo; dosimetry; HDR brachytherapy; transit dose
Abstract The goal of this study is to evaluate the ambient dose due to the transit of high dose rate (HDR) Co-60 sources along a transfer tube as compared to Ir-192 ones in a realistic clinical scenario. This goal is accomplished by evaluating air-kerma differences with Monte Carlo calculations using PENELOPE2011. Scatter from both the afterloader and the patient was not taken into account. Two sources, mHDR-v2 and Flexisource Co-60, (Elekta Brachytherapy, Veenendaal, the Netherlands) have been considered. These sources were simulated within a standard transfer tube located in an infinite air phantom. The movement of the source was included by displacing their positions along the connecting tube from z = – 75 cm to z = + 75 cm and combining them. Since modern afterloaders like Flexitron (Elekta) or Saginova (BEBIG GmbH) are able to use equally 192Ir and 60Co sources, it was assumed that both sources are displaced with equal speed. Typical HDR source activity content values were provided by the manufacturer. 2D distributions were obtained with type-A uncertainties (k = 2) less than 0.01%. From those, the air-kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding typical activities. It was found that it varies slowly with distance (less than 10% variation at 75 cm) but strongly in time due to the shorter half-life of the 192Ir (73.83 d). The maximum ratio is located close to the tube. It reaches a value of 0.57 when the typical activity of the sources at the time when they were installed by the vendor was used. Such ratio increases up to 1.28 at the end of the recommended working life (90 d) of the Ir-192 source. Co-60/Ir-192 air-kerma ratios are almost constant (0.51-0.57) in the vicinity of the source-tube with recent installed sources. Nevertheless, air-kerma ratios increase rapidly (1.15-1.29) whenever the Ir-192 is approaching the end of its life. In case of a medical event requiring the medical staff to access the treatment room, these ratios indicate that the dosimetric impact on the medical team will be lower, with a few exceptions, in the case of Co-60-based HDR brachytherapy as compared to Ir-192-based one when typical air-kerma strength values are considered.
Address [Gimenez-Alventosa, Vicent; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0952-4746 ISBN Medium
Area Expedition Conference
Notes WOS:000386436100002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2839
Permanent link to this record