|   | 
Details
   web
Records
Author Alvarez-Ruso, L. et al; Nieves, J.
Title NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering Type Journal Article
Year 2018 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 100 Issue Pages 1-68
Keywords (down) Neutrino; Nucleus; Scattering; Nuclear; Model; Oscillations
Abstract The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process – from quasi-elastic to deep inelastic scattering – is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.
Address [Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: morfin@fnal.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000430618800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3569
Permanent link to this record
 

 
Author Freitas, E.D.C.; Monteiro, C.M.B.; Ball, M.; Gomez-Cadenas, J.J.; Lopes, J.A.M.; Lux, T.; Sanchez, F.; dos Santos, J.M.F.
Title Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0 nu beta beta) search Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 684 Issue 4-5 Pages 205-210
Keywords (down) Neutrino; Neutrinoless double-beta decay; Secondary scintillation; Xenon; High-pressure
Abstract The search for neutrinoless double beta decay (0 nu beta beta) is an important topic in contemporary physics with many active experiments. New projects are planning to use high-pressure xenon gas as both source and detection medium. The secondary scintillation processes available in noble gases permit large amplification with negligible statistical fluctuations, offering the prospect of energy resolution approaching the Fano factor limit. This Letter reports results for xenon secondary scintillation yield, at room temperature, as a function of electric field in the gas scintillation gap for pressures ranging from 2 to 10 bar. A Large Area Avalanche Photodiode (LAAPD) collected the VUV secondary scintillation produced in the gas. X-rays directly absorbed in the LAAPD are used as a reference for determining the number of charge carriers produced by the scintillation pulse and, hence, the number of photons impinging the LAAPD. The number of photons produced per drifting electron and per kilovolt, the so-called scintillation amplification parameter, displays a small increase with pressure, ranging from 141 +/- 6 at 2 bar to 170 +/- 10 at 8 bar. In our setup, this Parameter does not increase above 8 bar due to nonnegligible electron attachment. The results are in good agreement with those presented in the literature in the 1 to 3 bar range. The increase of the scintillation amplification parameter with pressure for high gas densities has been also observed in former work at cryogenic temperatures.
Address [Freitas, E. D. C.; Monteiro, C. M. B.; Lopes, J. A. M.; dos Santos, J. M. F.] Univ Coimbra, GIAN CI, Dept Fis, P-3004516 Coimbra, Portugal, Email: jmf@gian.fis.uc.pt
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000275009600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 487
Permanent link to this record
 

 
Author ANTARES Collaboration (Ageron, M. et al); Aguilar, J.A.; Bigongiari, C.; Carmona, E.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Roca, V.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title ANTARES: The first undersea neutrino telescope Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 656 Issue 1 Pages 11-38
Keywords (down) Neutrino; Astroparticle; Neutrino astronomy; Deep sea detector; Marine technology; DWDM; Photomultiplier tube; Submarine cable; Wet mateable connector
Abstract The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.
Address [Barbarito, E; Cassano, B; Ceres, A; Circella, M; Fiorello, C; Mongelli, M; Montaruli, T; Ruppi, M] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy, Email: Marco.Circella@ba.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000296129100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 785
Permanent link to this record
 

 
Author Nieves, J.; Sobczyk, J.E.
Title In medium dispersion relation effects in nuclear inclusive reactions at intermediate and low energies Type Journal Article
Year 2017 Publication Annals of Physics Abbreviated Journal Ann. Phys.
Volume 383 Issue Pages 455-496
Keywords (down) Neutrino-nucleus scattering; Quasielastic mechanism; Spectral function; RPA; Muon capture; Radiative pion capture
Abstract In a well-established many-body framework, successful in modeling a great variety of nuclear processes, we analyze the role of the spectral functions (SFs) accounting for the modifications of the dispersion relation of nucleons embedded in a nuclear medium. We concentrate in processes mostly governed by one-body mechanisms, and study possible approximations to evaluate the particle hole propagator using SFs. We also investigate how to include together SFs and long-range RPA-correlation corrections in the evaluation of nuclear response functions, discussing the existing interplay between both type of nuclear effects. At low energy transfers (<= 50 MeV), we compare our predictions for inclusive muon and radiative pion captures in nuclei, and charge-current (CC) neutrino-nucleus cross sections with experimental results. We also present an analysis of intermediate energy quasi-elastic neutrino scattering for various targets and both neutrino and antineutrino CC driven processes. In all cases, we pay special attention to estimate the uncertainties affecting the theoretical predictions. In particular, we show that errors on the a,,sigma(mu)/sigma(e) ratio are much smaller than 5%, and also much smaller than the size of the SF+RPA nuclear corrections, which produce significant effects, not only in the individual cross sections, but also in their ratio for neutrino energies below 400 MeV. These latter nuclear corrections, beyond Pauli blocking, turn out to be thus essential to achieve a correct theoretical understanding of this ratio of cross sections of interest for appearance neutrino oscillation experiments. We also briefly compare our SF and RPA results to predictions obtained within other representative approaches.
Address [Nieves, Juan] Univ Valencia, CSIC,Ctr Mixto, Inst Invest Paterna, Inst Fis Corpuscular IFIC, Apartado 22085, E-46071 Valencia, Spain, Email: jmnieves@ific.uv.es
Corporate Author Thesis
Publisher Academic Press Inc Elsevier Science Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-4916 ISBN Medium
Area Expedition Conference
Notes WOS:000407667300025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3244
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope Type Journal Article
Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 34 Issue 9 Pages 652-662
Keywords (down) Neutrino telescope; Track reconstruction
Abstract An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data.
Address [Carminati, G.] Leiden Univ, NL-2300 RA Leiden, Netherlands, Email: brunner@ifh.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000289329100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 608
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Performance of the front-end electronics of the ANTARES neutrino telescope Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 622 Issue 1 Pages 59-73
Keywords (down) Neutrino telescope; Photomultiplier tube; Front-end electronics; ASIC
Abstract ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip: results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.
Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, CSIC, Valencia 46071, Spain, Email: s.loucatos@cea.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000282530300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 363
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Calvo Diaz-Aldagalan, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Ruiz-Rivas, J.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 42 Issue Pages 7-14
Keywords (down) Neutrino telescope; Fermi Bubbles; KM3NeT
Abstract A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the “Fermi bubbles”). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km(3) of instrumented volume. The effect of a possible lower cutoff is also considered.
Address [Craig, J.; Jamieson, A.; Priede, I. G.] Univ Aberdeen, Aberdeen AB9 1FX, Scotland, Email: coniglione@lns.inf
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000315371900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1352
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title A method for detection of muon induced electromagnetic showers with the ANTARES detector Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 675 Issue Pages 56-62
Keywords (down) Neutrino telescope; Electromagnetic shower identification; High energy muons; Energy reconstruction
Abstract The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.
Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Rostovtsev, A.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: manganos@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000302973600011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 988
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for a diffuse flux of high-energy nu(mu) with the ANTARES neutrino telescope Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 696 Issue 1-2 Pages 16-22
Keywords (down) Neutrino telescope; Diffuse muon neutrino flux; ANTARES
Abstract A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A (0.83 x 2 pi) sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an E-2 flux spectrum, a 90% c.l. upper limit on the diffuse nu(mu) flux of E-2 Phi(90%) = 5.3 x 10(-8) GeV cm(-2) s(-1) sr(-1) in the energy range 20 TeV-2.5 PeV is obtained. Other signal models with different energy spectra are also tested and some rejected.
Address [Bazzotti, M.; Biagi, S.; Carminati, G.; Cecchini, S.; Chiarusi, T.; Giacomelli, G.; Margiotta, A.; Spurio, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy, Email: spurio@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000286708900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 561
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 760 Issue Pages 143-148
Keywords (down) Neutrino telescope; Diffuse muon neutrino flux; ANTARES
Abstract A highly significant excess of high-energy astrophysical neutrinos has been reported by the IceCube Collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices Gamma are set. For Gamma = 2.4 the 90% confidence level flux upper limit at 100 TeV for one neutrino flavour corresponds to phi(1f)(0) (100TeV) = 2.0 . 10(-17) GeV-1 cm(-2) s(-1) sr(-1). Under this assumption, at most two events of the IceCube cosmic candidates can originate from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to account for IceCube High Energy Starting Events is excluded at 90% confidence level.
Address [Adrian-Martinez, S.; Ardid, M.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Paranimf 1, Gandia 46730, Spain, Email: luigiantonio.fusco@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000382890500022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2815
Permanent link to this record