toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Identification of charm jets at LHCb Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 2 Pages P02028 - 23pp  
  Keywords (up) Analysis and statistical methods; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors  
  Abstract The identification of charm jets is achieved at LHCb for data collected in 2015-2018 using a method based on the properties of displaced vertices reconstructed and matched with jets. The performance of this method is determined using a dijet calibration dataset recorded by the LHCb detector and selected such that the jets are unbiased in quantities used in the tagging algorithm. The charm-tagging efficiency is reported as a function of the transverse momentum of the jet. The measured efficiencies are compared to those obtained from simulation and found to be in good agreement.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: dcraik@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000770368300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5177  
Permanent link to this record
 

 
Author Ayala, C.; Cvetic, G. url  doi
openurl 
  Title anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models Type Journal Article
  Year 2016 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 199 Issue Pages 114-117  
  Keywords (up) Analytic (holomorphic) QCD coupling; Fractional Analytic Perturbation Theory; Two-delta analytic QCD model; Massive Perturbation Theory; Perturbative QCD; Renormalization group evolution  
  Abstract We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings A(v)(Q(2)) for complex or real squared momenta Q(2). These couplings are holomorphic analogs of the powers a(Q(2))(v) of the underlying perturbative QCD (pQCD) coupling a(Q(2)) equivalent to alpha(s)(Q(2))/pi, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 delta anQCD), and Massive Perturbation Theory (MPT). The index v can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetic, 2015), but are now written in Fortran. Program summary Program title: AanQCDext Catalogue identifier: AEYKv10 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYICv1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12105 No. of bytes in distributed program, including test data, etc.: 98822 Distribution format: tar.gz Programming language: Fortran. Computer: Any work-station or PC where Fortran 95/200312008 (gfortran) is running. Operating system: Operating system Linux (Ubuntu and Scientific Linux), Windows (in all cases using gfortran). Classification: 11.1, 11.5. Nature of problem: Calculation of values of the running analytic couplings A(v)(Q(2); N-f) for general complex squared momenta Q(2) equivalent to -q(2), in three analytic QCD models, where A(v)(Q(2); N-f) is the analytic (holomorphic) analog of the power (alpha(s)(Q(2); N-f)/pi)(v). Here, A(v)(Q(2); N-f) is a holomorphic function in the Q(2) complex plane, with the exception of the negative semiaxis (-infinity, -M-thr(2)], reflecting the analyticity properties of the spacelike renormalization invariant quantities D(Q(2)) in QCD. In contrast, the perturbative QCD power (alpha(s)(Q(2); N-f)/pi)(v) has singularities even outside the negative semiaxis (Landau ghosts). The three considered models are: Analytic Perturbation theory (APT); Two-delta analytic QCD (2 delta anQCD); Massive Perturbation Theory (MPT). We refer to Ref. [1] for more details and literature. Solution method: The Fortran programs for FAPT and 2 delta anQCD models contain routines and functions needed to perform two-dimensional numerical integrations involving the spectral function, in order to evaluate A(v)(Q(2)) couplings. In MPT model, one-dimensional numerical integration involving A(1)(Q(2)) is sufficient to evaluate any A(v)(Q(2)) coupling. Restrictions: For unphysical choices of the input parameters the results are meaningless. When Q(2) is close to the cut region of the couplings (Q(2) real negative), the calculations can take more time and can have less precision. Running time: For evaluation of a set of about 10 related couplings, the times vary in the range t similar to 10(1)-10(2) s. MPT requires less time, t similar to 1-10(1) s. References: [1] C. Ayala and G. Cvetic, anQCD: a Mathematica package for calculations in general analytic QCD models, Comput. Phys. Commun. 190 (2015) 182.  
  Address [Ayala, Cesar] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: c.ayala86@gmail.com;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367113200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2501  
Permanent link to this record
 

 
Author Clausse, A.; Soto, L.; Tarifeño-Saldivia, A. doi  openurl
  Title Influence of the Anode Length on the Neutron Emission of a 50 J Plasma Focus: Modeling and Experiment Type Journal Article
  Year 2015 Publication IEEE Transactions on Plasma Science Abbreviated Journal IEEE Trans. Plasma Sci.  
  Volume 43 Issue 2 Pages 629-636  
  Keywords (up) Anode; fusion neutrons; modeling; plasma focus (PF); plasma pinch  
  Abstract A comprehensive set of electric data measured in a small plasma focus (PF) device of 50 J correlated with the corresponding neutron emissions is taken as the base for developing a semiempirical model of the current sheet dynamics and the neutron yield. The model is able to explain the dependence of the neutron yield with the pressure and anode length with good accuracy, and suggests a physical interpretation of the drive parameter commonly used in PF design.  
  Address [Clausse, Alejandro] Natl Univ Cent Buenos Aires, Natl Atom Energy Commiss, Natl Sci & Tech Res Council, RA-7000 Tandil, Argentina, Email: clausse@exa.unicen.edu.ar;  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352084400021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2186  
Permanent link to this record
 

 
Author Delgado, R.L.; Gomez-Ambrosio, R.; Martinez-Martin, J.; Salas-Bernardez, A.; Sanz-Cillero, J.J. url  doi
openurl 
  Title Production of two, three, and four Higgs bosons: where SMEFT and HEFT depart Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 037 - 45pp  
  Keywords (up) Anomalous Higgs Couplings; Higgs Properties; Strongly Interacting Higgs; Electroweak Precision Physics  
  Abstract In this article we study the phenomenological implications of multiple Higgs boson production from longitudinal vector boson scattering in the context of effective field theories. We find compact representations for effective tree-level amplitudes with up to four final state Higgs bosons. Total cross sections are then computed for scenarios relevant at the LHC in which we find the general Higgs Effective Theory (HEFT) prediction avoids the heavy suppression observed in Standard Model Effective Field Theory (SMEFT).  
  Address [Delgado, Rafael L.] Univ Politecn Madrid, Dept Matemat Aplicadas TIC, Nikola Tesla,s-n, Madrid 28031, Spain, Email: rafael.delgado@upm.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001177947600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6013  
Permanent link to this record
 

 
Author Kasieczka, G. et al; Sanz, V. url  doi
openurl 
  Title The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics Type Journal Article
  Year 2021 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 84 Issue 12 Pages 124201 - 64pp  
  Keywords (up) anomaly detection; machine learning; unsupervised learning; weakly supervised learning; semisupervised learning; beyond the standard model; model-agnostic methods  
  Abstract A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.  
  Address [Kasieczka, Gregor] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: gregor.kasieczka@uni-hamburg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000727698500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5039  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva