|   | 
Details
   web
Records
Author CDF Collaboration (Aaltonen, T. et al); Cabrera, S.
Title Search for new color-octet vector particle decaying to t(t)over-bar in p(p)over-bar collisions at root s=1.96 TeV Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 691 Issue 4 Pages 183-190
Keywords (down) Massive gluon; Top quark
Abstract We present the result of a search for a massive color-octet vector particle, (e.g. a massive gluon) decaying to a pair of top quarks in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb(-1) of data collected using the CDF detector during Run II of the Tevatron at Fermilab. We study t (t) over bar events in the lepton + jets channel with at least one b-tagged jet. A massive gluon is characterized by its mass, decay width, and the strength of its coupling to quarks. These parameters are determined according to the observed invariant mass distribution of top quark pairs. We set limits on the massive gluon coupling strength for masses between 400 and 800 GeV/c(2) and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the hypothetical massive gluon to quarks is consistent with zero within the explored parameter space.
Address [Nara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan, Email: junji@fnal.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000280328200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 278
Permanent link to this record
 

 
Author Baron, R.; Boucaud, P.; Dimopoulos, P.; Frezzotti, R.; Palao, D.; Rossi, G.; Farchioni, F.; Munster, G.; Sudmann, T.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Lubicz, V.; Simula, S.; Michael, C.; Scorzato, L.; Shindler, A.; Urbach, C.; Wenger, U.
Title Light meson physics from maximally twisted mass lattice QCD Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 097 - 41pp
Keywords (down) Lattice QCD; Quark Masses and SM Parameters; QCD
Abstract We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N-f = 2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 less than or similar to m(PS) less than or similar to 650MeV we control the major systematic effects of our calculation. This enables us to confront our N-f = 2 data with SU(2) chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass.
Address [Baron, Remi; Boucaud, Phillip] Univ Paris 11, Phys Theor Lab, Ctr Orsay, F-91405 Orsay, France, Email: remi.baron@centraliens.net
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000282367800036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 348
Permanent link to this record
 

 
Author Bernardoni, F.; Blossier, B.; Bulava, J.; Della Morte, M.; Fritzsch, P.; Garron, N.; Gerardin, A.; Heitger, J.; von Hippel, G.; Simma, H.; Sommer, R.
Title The b-quark mass from non-perturbative N-f=2 Heavy Quark Effective Theory at O(1/m(h)) Type Journal Article
Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 730 Issue Pages 171-177
Keywords (down) Lattice QCD; Heavy Quark Effective Theory; b-quark mass
Abstract We report our final estimate of the b-quark mass from N-f = 2 lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at O(1/m(h)). Treating systematic and statistical errors in a conservative manner, we obtain (m) over bar ((MS) over bar)(b) (2 GeV) = 4.88(15) GeV after an extrapolation to the physical point.
Address [Bernardoni, Fabio; Simma, Hubert; Sommer, Rainer] DESY, NIC, D-15738 Zeuthen, Germany
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000333506400031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1742
Permanent link to this record
 

 
Author Carrasco, N.; Ciuchini, M.; Dimopoulos, P.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Lubicz, V.; Michael, C.; Picca, E.; Rossi, G.C.; Sanfilippo, F.; Shindler, A.; Silvestrini, L.; Simula, S.; Tarantino, C.
Title B-physics from N-f=2 tmQCD: the Standard Model and beyond Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 016 - 52pp
Keywords (down) Lattice QCD; B-Physics; Beyond Standard Model; Quark Masses and SM Parameters
Abstract We present a lattice QCD computation of the b-quark mass, the B and B-s decay constants, the B-mixing bag parameters for the full four-fermion operator basis as well as determinations for xi and f(Bq) root B-i((q)) extrapolated to the continuum limit and to the physical pion mass. We used N-f = 2 twisted mass Wilson fermions at four values of the lattice spacing with pion masses ranging from 280 to 500 MeV. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out on ratios of physical quantities computed at nearby quark masses, exploiting the fact that they have an exactly known infinite mass limit. Our results are m(b)(m(b), (MS) over bar) = 4.29(12) GeV, f(Bs) = 228(8) MeV, f(B) = 189(8) MeV and f(Bs)/f(B) = 1.206(24). Moreover with our results for the bag-parameters we find xi = 1.225(31), B-1((s))/B-1((d)) = 1.01(2), f (Bd) root(B) over cap ((d))(1) = 216(10) MeV and integral Bs root(B) over cap ((s))(1) = 262(10) MeV. We also computed the bag parameters for the complete basis of the four-fermion operators which are required in beyond the SM theories. By using these results for the bag parameters we are able to provide a refined Unitarity Triangle analysis in the presence of New Physics, improving the bounds coming from B-(s) -(B) over bar ((s)) mixing.
Address [Carrasco, N.; Gimenez, V.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: nuria.carrasco@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347824200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2086
Permanent link to this record
 

 
Author Bonilla, J. et al; Vos, M.
Title Jets and Jet Substructure at Future Colliders Type Journal Article
Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 10 Issue Pages 897719 - 17pp
Keywords (down) jets; jet substructure; collider; artificial intelligence; machine learning; snowmass; top quark; Higgs boson
Abstract Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.
Address [Bonilla, Johan; Erbacher, Robin] Univ Calif, Dept Phys & Astron, Davis, CA USA, Email: bpnachman@lbl.gov;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000822618100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5464
Permanent link to this record