|   | 
Details
   web
Records
Author Bonilla, J. et al; Vos, M.
Title Jets and Jet Substructure at Future Colliders Type Journal Article
Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 10 Issue Pages 897719 - 17pp
Keywords (down) jets; jet substructure; collider; artificial intelligence; machine learning; snowmass; top quark; Higgs boson
Abstract Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.
Address [Bonilla, Johan; Erbacher, Robin] Univ Calif, Dept Phys & Astron, Davis, CA USA, Email: bpnachman@lbl.gov;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000822618100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5464
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, J.G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Search for t(t)over-bar resonances in fully hadronic final states in pp collisions at root s=13 TeV with the ATLAS detector Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 061 - 43pp
Keywords (down) Jet substructure; Beyond Standard Model; Hadron-Hadron scattering (experiments); Heavy quark production; Jets
Abstract This paper presents a search for new heavy particles decaying into a pair of top quarks using 139 fb(-1) of proton-proton collision data recorded at a centre-of-mass energy of root s = 13TeV with the ATLAS detector at the Large Hadron Collider. The search is performed using events consistent with pair production of high-transverse-momentum top quarks and their subsequent decays into the fully hadronic final states. The analysis is optimized for resonances decaying into a t (t) over bar pair with mass above 1.4TeV, exploiting a dedicated multivariate technique with jet substructure to identify hadronically decaying top quarks using large-radius jets and evaluating the background expectation from data. No significant deviation from the background prediction is observed. Limits are set on the production cross-section times branching fraction for the new Z' boson in a topcolor-assisted-technicolor model. The Z0 boson masses below 3.9 and 4.7TeV are excluded at 95% confidence level for the decay widths of 1% and 3%, respectively.
Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000579438800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4574
Permanent link to this record
 

 
Author Kulikov, I.; Algora, A.; Atanasov, D.; Ascher, P.; Blaum, K.; Cakirli, R.B.; Herlert, A.; Huang, W.J.; Karthein, J.; Litvinov, Y.A.; Lunney, D.; Manea, V.; Mougeot, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.
Title Masses of short-lived Sc-49, Sc-50, As-70, Br-73 and stable Hg-196 nuclides Type Journal Article
Year 2020 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 1002 Issue Pages 121990 - 15pp
Keywords (down) ISOLTRAP; Mass measurements; Atomic mass evaluation; Multi-reflection time-of-flight; Penning trap mass spectrometry
Abstract Mass measurements of Sc-49,Sc-50, As-70, Br-73 and Hg-196 nuclides produced at CERN's radioactive-ion beam facility ISOLDE are presented. The measurements were performed at the ISOLTRAP mass spectrometer by use of the multi-reflection time-of-flight and the Penning-trap mass spectrometry techniques. The new results agree well with previously known literature values. The mass accuracy for all cases has been improved.
Address [Kulikov, I; Litvinov, Yu A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany, Email: ivan.kulikov@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000567817300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4528
Permanent link to this record
 

 
Author Oliver, S.; Vijande, J.; Tejedor-Aguilar, N.; Miro, R.; Rovira-Escutia, J.J.; Ballester, F.; Juste, B.; Carmona, V.; Felici, G.; Verdu, G.; Sanchis, E.; Conde, A.; Perez-Calatayud, J.
Title Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization Type Journal Article
Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.
Volume 212 Issue Pages 111102 - 6pp
Keywords (down) Intraoperative radiotherapy; Electron portable LinAc; Flattening filter; Dosimetry; Monte Carlo
Abstract Intraoperative radiotherapy using mobile linear accelerators is used for a wide variety of malignancies. However, when large fields are used in combination with high energies, a deterioration of the flatness dose profile is measured with respect to smaller fields and lower energies. Indeed, for the LIAC HWL of Sordina, this deterioration is observed for the 12 MeV beam combined with 10 cm (or larger) diameter applicator. Aimed to solve this problem, a flattening filter has been designed and validated evaluating the feasibility of its usage at the upper part of the applicator. The design of the filter was based on Monte Carlo simulations because of its accuracy in modeling components of clinical devices, among other purposes. The LIAC 10 cm diameter applicator was modeled and simulated independently by two different research groups using two different MC codes, reproducing the heterogeneity of the 12 MeV energy beam. Then, an iterative process of filter design was carried out. Finally, the MC designed conical filter with the optimal size and height to obtain the desired flattened beam was built in-house using a 3D printer. During the experimental validation of the applicator-filter, percentage depth dose, beam profiles, absolute and peripheral dose measurements were performed to demonstrate the effectiveness of the filter addition in the applicator. These measurements conclude that the beam has been flattened, from 5.9% with the standard configuration to 1.6% for the configuration with the filter, without significant increase of the peripheral dose. Consequently, the new filter-applicator LIAC configuration can be used also in a conventional surgery room. A reduction of 16% of the output dose and a reduction of 1.1 mm in the D50 of the percentage depth dose was measured with respect to the original configuration. This work is a proof-of-concept that demonstrates that it is possible to add a filter able to flatten the beam delivered by the Sordina LIAC HWL. Future studies will focus on more refined technical solutions fully compatible with the integrity of the applicator, including its sterilization, to be safely introduced in the clinical practice.
Address [Oliver, S.; Miro, R.; Juste, B.; Verdu, G.] Univ Polite cn Vale ncia, Inst Segur Ind Radiofis & Medioambiental ISIRYM, Cami Vera S-N, Valencia 46022, Spain, Email: gverdu@iqn.upv.es
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-806x ISBN Medium
Area Expedition Conference
Notes WOS:001026194900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5578
Permanent link to this record
 

 
Author Azevedo, C.D.R.; Baeza, A.; Chauveau, E.; Corbacho, J.A.; Diaz, J.; Domange, J.; Marquet, C.; Martinez-Roig, M.; Piquemal, F.; Prado, D.; Veloso, J.F.C.A.; Yahlali, N.
Title Development of a real-time tritium-in-water monitor Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 12 Pages T12008 - 14pp
Keywords (down) Instruments for environmental monitoring; food control and medical use; Very low-energy charged particle detectors; Scintillators and scintillating fibres and light guides
Abstract In this paper, we report the development and performance of a detector module envisaging a tritium-in-water real-time activity monitor. The monitor is based on modular detection units whose number can be chosen according to the required sensitivity. The full system is being designed to achieve a Minimum Detectable Activity (MDA) of 100 Bq/L of tritium-in-water activity which is the limit established by the E.U. Council Directive 2013/51/Euratom for water intended for human consumption. The same system can be used as a real-time pre-alert system for nuclear power plant regarding tritium-in water environmental surveillance. The first detector module was characterized, commissioned and installed immediately after the discharge channel of the Arrocampo dam (Almaraz nuclear power plant, Spain) on the Tagus river. Due to the high sensitivity of the single detection modules, the system requires radioactive background mitigation techniques through the use of active and passive shielding. We have extrapolated a MDA of 3.6 kBq/L for a single module being this value limited by the cosmic background. The obtained value for a single module is already compatible with a real-time environmental surveillance and pre-alert system. Further optimization of the single-module sensitivity will imply the reduction of the number of modules and the cost of the detector system.
Address [Azevedo, C. D. R.; Prado, D.] Univ Aveiro, I3N, Phys Dept, Campus Univ Santiago, P-3810193 Aveiro, Portugal, Email: cdazevedo@ua.pt
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001147582800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5912
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Diaz, A.; Alves Garre, S.; Carretero, V.; Sanchez Losa, A.; Salesa Greus, F.
Title An Ultra-Narrow Time Optical Pulse Emitter Based on a Laser: UNTOPEL Type Journal Article
Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 70 Issue 10 Pages 2364-2372
Keywords (down) Instrumentation electronics; neutrino telescope instrumentation; subnanosecond light source; time calibration instrument
Abstract Light sources that emit repetitive subnanosecond pulses are used in neutrino telescopes for time calibration. Optical pulses with an ultra-narrow (subnanosecond) width can replicate the light produced by neutrino interactions, and are an important calibration and test element. By measuring the time-of-flight of the light, it is possible to provide a relative time calibration for all the detector photomultipliers. This work presents the ultra-narrow time optical pulse emitter based on a laser (UNTOPEL), an instrument emitting ultra-short laser optical pulses with a duration of 500 ps, energies per pulse of four microjoules at a wavelength of 532 nm, and a timing precision of 400 ps. The UNTOPEL pulse intensity can be fine-tuned, which is a novelty and a significant advantage in those applications that need to illuminate light detectors located at different distances with the same light intensity. The UNTOPEL pulse intensity can be controlled remotely, allowing for its use in operating conditions where physical access is impossible or difficult. Moreover, it is easy to operate and can be easily controlled through an inter-integrated circuit bus. The UNTOPEL is a sound instrument used when subnanosecond pulses and variable energy emissions are needed.
Address [Real, Diego; Calvo, David; Garre, Sergio Alves; Carretero, Victor; Losa, Agustin Sanchez; Greus, FranciscoSalesa] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: real@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:001098078200010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5795
Permanent link to this record
 

 
Author Caballero, L.; Albiol, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganes Nieto, J.L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodriguez, P.; Perez Magan, D.L.
Title Gamma-ray imaging system for real-time measurements in nuclear waste characterisation Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P03016 - 23pp
Keywords (down) Inspection with gamma rays; Radiation monitoring
Abstract Acompact, portable and large field-of-viewgamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.
Address [Caballero, L.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Luis.Caballero@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000428146300006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3540
Permanent link to this record
 

 
Author Figueroa, D.G.; Raatikainen, S.; Rasanen, S.; Tomberg, E.
Title Implications of stochastic effects for primordial black hole production in ultra-slow-roll inflation Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 027 - 48pp
Keywords (down) inflation; primordial black holes; dark matter theory; massive black holes
Abstract We study the impact of stochastic noise on the generation of primordial black hole (PBH) seeds in ultra-slow-roll (USR) inflation with numerical simulations. We consider the non-linearity of the system by consistently taking into account the noise dependence on the inflaton perturbations, while evolving the perturbations on the coarse-grained background affected by the noise. We capture in this way the non-Markovian nature of the dynamics, and demonstrate that non-Markovian effects are subleading. Using the Delta N formalism, we find the probability distribution P(R) of the comoving curvature perturbation R. We consider inflationary potentials that fit the CMB and lead to PBH dark matter with i) asteroid, ii) solar, or iii) Planck mass, as well as iv) PBHs that form the seeds of supermassive black holes. We find that stochastic effects enhance the PBH abundance by a factor of O(10)-O(10(8)), depending on the PBH mass. We also show that the usual approximation, where stochastic kicks depend only on the Hubble rate, either underestimates or overestimates the abundance by orders of magnitude, depending on the potential. We evaluate the gauge dependence of the results, discuss the quantum-to-classical transition, and highlight open issues of the application of the stochastic formalism to USR inflation.
Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueoa@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804493000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5239
Permanent link to this record
 

 
Author Ramirez, H.; Passaglia, S.; Motohashi, H.; Hu, W.; Mena, O.
Title Reconciling tensor and scalar observables in G-inflation Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 039 - 20pp
Keywords (down) inflation; cosmological parameters from CMBR
Abstract The simple m(2)phi(2) potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral index n(s). Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt alpha(s) that can be of order n(s) – 1. We show that the observables on CMB and large scale structure scales can be predicted accurately using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits on vertical bar alpha(s)vertical bar place a lower bound of r greater than or similar to 0.005 and, conversely, a given r places a lower bound on vertical bar alpha(s)vertical bar, both of which are potentially observable with next generation CMB and large scale structure surveys.
Address [Ramirez, Hector] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: hector.ramirez@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000429895200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3557
Permanent link to this record
 

 
Author Fernandez-Tejero, J. et al; Soldevila, U.
Title Humidity sensitivity of large area silicon sensors: Study and implications Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 978 Issue Pages 164406 - 6pp
Keywords (down) Humidity sensitivity; Large area silicon sensors; Slim-edge; HL-LHC
Abstract The production of large area sensors is one of the main challenges that the ATLAS collaboration faces for the new Inner-Tracker full-silicon detector. During the prototype fabrication phase for the High Luminosity Large Hadron Collider upgrade, several ATLAS institutes observed indications of humidity sensitivity of large area sensors, even at relative humidities well below the dew point. Specifically, prototype Barrel and End-Cap silicon strip sensors fabricated in 6-inch wafers manifest a prompt decrease of the breakdown voltage when operating under high relative humidity, adversely affecting the performance of the sensors. In addition to the investigation of these prototype sensors, a specific fabrication batch with special passivation is also studied, allowing for a deeper understanding of the responsible mechanisms. This work presents an extensive study of this behaviour on large area sensors. The locations of the hotspots at the breakdown voltage at high humidity are revealed using different infrared thermography techniques. Several palliative treatments are attempted, proving the influence of sensor cleaning methods, as well as baking, on the device performance, but no improvement on the humidity sensitivity was achieved. Furthermore, a study of the incidence of the sensitivity in different batches is also presented, introducing a hypothesis of the origins of the humidity sensitivity associated to the sensor edge design, together with passivation thickness and conformity. Several actions to be taken during sensor production and assembly are extracted from this study, in order to minimize the impact of humidity sensitivity on the performance of large area silicon sensors for High Energy Physics experiments.
Address [Fernandez-Tejero, J.; Avino, O.; Fleta, C.; Ullan, M.; Vellvehi, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000560076700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4504
Permanent link to this record