toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Andricek, L.; Boronat, M.; Fuster, J.; Garcia, I.; Gomis, P.; Marinas, C.; Ninkovic, J.; Perello, M.; Villarejo, M.A.; Vos, M. url  doi
openurl 
  Title Integrated cooling channels in position-sensitive silicon detectors Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P06018 - 15pp  
  Keywords (down) Particle tracking detectors; Particle tracking detectors (Solid-state detectors)  
  Abstract We present an approach to construct position-sensitive silicon detectors with an integrated cooling circuit. Tests on samples demonstrate that a very modest liquid flow very effectively cool the devices up to a power dissipation of over 10 W/cm(2). The liquid flow is found to have a negligible impact on the mechanical stability. A finite-element simulation predicts the cooling performance to an accuracy of approximately 10%.  
  Address [Andricek, L.; Ninkovic, J.] Max Plank Gesell, HalbLeiterLabor, Munich, Germany, Email: ignacio.garcia@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000379239700030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2760  
Permanent link to this record
 

 
Author Aplin, S.; Boronat, M.; Dannheim, D.; Duarte, J.; Gaede, F.; Ruiz-Jimeno, A.; Sailer, A.; Valentan, M.; Vila, I.; Vos, M. url  doi
openurl 
  Title Forward tracking at the next e(+)e(-) collider part II: experimental challenges and detector design Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages T06001 - 26pp  
  Keywords (down) Particle tracking detectors; Large detector systems for particle and astroparticle physics; Particle tracking detectors (Solid-state detectors)  
  Abstract We present the second in a series of studies into the forward tracking system for a future linear e(+)e(-) collider with a center-of-mass energy in the range from 250 GeV to 3 TeV. In this note a number of specific challenges are investigated, which have caused a degradation of the tracking and vertexing performance in the forward region in previous experiments. We perform a quantitative analysis of the dependence of the tracking performance on detector design parameters and identify several ways to mitigate the performance loss for charged particles emitted at shallow angle.  
  Address [Aplin, S.; Gaede, F.] Deutsche Elektronen Synchrotron, D-22607 Hamburg, Germany  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321627400024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1503  
Permanent link to this record
 

 
Author Marco-Hernandez, R. doi  openurl
  Title Development of a beam test telescope based on the Alibava readout system Type Journal Article
  Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 6 Issue Pages C01002 - 7pp  
  Keywords (down) Particle tracking detectors; Data acquisition circuits; Front-end electronics for detector readout; Digital electronic circuits  
  Abstract A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectronica (CNM) of Barcelona and Instituto de Fisica Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.  
  Address [Marco-Hernandez, R.; Alibava Collaboration] CSIC UV, Inst Fis Corpuscular, E-46980 Paterna, Valencia, Spain, Email: rmarco@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291345600007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 644  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J. url  doi
openurl 
  Title Momentum scale calibration of the LHCb spectrometer Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages P02008 - 21pp  
  Keywords (down) Particle tracking detectors; Analysis and statistical methods  
  Abstract For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/qi -> mu+mu- and B+ -> J/qiK+ decays and leads to a relative accuracy of 3 x 10-4 on the momentum scale.  
  Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: seophine.stanislaus@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185791500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6070  
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila Serrano, U. url  doi
openurl 
  Title Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages T03004 - 22pp  
  Keywords (down) Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Solid state detectors; Performance of High Energy Physics Detectors  
  Abstract In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.  
  Address [Kuehn, S.] European Org Nucl Res, CERN, Geneva, Switzerland, Email: susanne.kuehn@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428146400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3530  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva