|   | 
Details
   web
Records
Author Moline, A.; Ibarra, A.; Palomares-Ruiz, S.
Title Future sensitivity of neutrino telescopes to dark matter annihilations from the cosmic diffuse neutrino signal Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 005 - 34pp
Keywords (down) dark matter theory; dark matter simulations; cosmological neutrinos
Abstract Cosmological observations and cold dark matter N-body simulations indicate that our Universe is populated by numerous halos, where dark matter particles annihilate, potentially producing Standard Model particles. In this paper we calculate the contribution to the diffuse neutrino background from dark matter annihilations in halos at all redshifts and we estimate the future sensitivity to the annihilation cross section of neutrino telescopes such as IceCube or ANTARES. We consider various parametrizations to describe the internal halo properties and for the halo mass function in order to bracket the theoretical uncertainty in the limits from the modeling of the cosmological annihilation flux. We find that observations of the cosmic diffuse neutrino flux at large angular distances from the galactic center lead to constraints on the dark matter annihilation cross section which are complementary to ( and for some extrapolations of the astrophysical parameters, better than) those stemming from observations of the Milky Way halo, especially for neutrino telescopes not pointing directly to the Milky Way center, as is the case of IceCube.
Address [Moline, Angeles] Univ Tecn Lisboa, Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal, Email: maria.moline@ist.utl.pt;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000359215400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2369
Permanent link to this record
 

 
Author Bernal, N.; Forero-Romero, J.E.; Garani, R.; Palomares-Ruiz, S.
Title Systematic uncertainties from halo asphericity in dark matter searches Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 004 - 30pp
Keywords (down) dark matter theory; dark matter simulations
Abstract Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm(3). Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.
Address [Bernal, Nicolas] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01405 Sao Paulo, Brazil, Email: nicolas@ift.unesp.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000342642500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1958
Permanent link to this record
 

 
Author Ruiz de Austri, R.; Perez de los Heros, C.
Title Impact of nucleon matrix element uncertainties on the interpretation of direct and indirect dark matter search results Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 049 - 19pp
Keywords (down) dark matter theory; dark matter experiments; supersymmetry and cosmology
Abstract We study in detail the impact of the current uncertainty in nucleon matrix elements on the sensitivity of direct and indirect experimental techniques for dark matter detection. We perform two scans in the framework of the cMSSM: one using recent values of the pion-sigma term obtained from Lattice QCD, and the other using values derived from experimental measurements. The two choices correspond to extreme values quoted in the literature and reflect the current tension between different ways of obtaining information about the structure of the nucleon. All other inputs in the scans, astrophysical and from particle physics, are kept unchanged. We use two experiments, XENON100 and IceCube, as benchmark cases to illustrate our case. We find that the interpretation of dark matter search results from direct detection experiments is more sensitive to the choice of the central values of the hadronic inputs than the results of indirect search experiments. The allowed regions of cMSSM parameter space after including XENON100 constrains strongly differ depending on the assumptions on the hadronic matrix elements used. On the other hand, the constraining potential of IceCube is almost independent of the choice of these values.
Address [Ruiz de Austri, R.] IFIC UV CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: rruiz@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1674
Permanent link to this record
 

 
Author Bertone, G.; Cumberbatch, D.; Ruiz de Austri, R.; Trotta, R.
Title Dark Matter searches: the nightmare scenario Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 004 - 24pp
Keywords (down) dark matter theory; dark matter experiments; neutrino detectors; solar and atmospheric neutrinos
Abstract The unfortunate case where the Large Hadron Collider (LHC) fails to discover physics Beyond the Standard Model (BSM) is sometimes referred to as the “Nightmare scenario” of particle physics. We study the consequences of this hypothetical scenario for Dark Matter (DM), in the framework of the constrained Minimal Supersymmetric Standard Model (cMSSM). We evaluate the surviving regions of the cMSSM parameter space after null searches at the LHC, using several different LHC configurations, and study the consequences for DM searches with ton-scale direct detectors and the IceCube neutrino telescope. We demonstrate that ton-scale direct detection experiments will be able to conclusively probe the cMSSM parameter space that would survive null searches at the LHC with 100 fb(-1) of integrated luminosity at 14TeV. We also demonstrate that IceCube (80 strings plus DeepCore) will be able to probe as much as similar or equal to 17% of the currently favoured parameter space after 5 years of observation.
Address [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland, Email: bertone@iap.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000300403300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 937
Permanent link to this record
 

 
Author Kim, J.S.; Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R.
Title Right-handed sneutrino and gravitino multicomponent dark matter in light of neutrino detectors Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 050 - 32pp
Keywords (down) dark matter theory; dark matter experiments; neutrino detectors
Abstract We investigate the possibility that right-handed (RH) sneutrinos and gravitinos can coexist and explain the dark matter (DM) problem. We compare extensions of the minimal supersymmetric standard model (MSSM) and the next-to-MSSM (NMSSM) adding RH neutrinos superfields, with special emphasis on the latter. If the gravitino is the lightest supersymmetric particle (LSP) and the RH sneutrino the next-to-LSP (NLSP), the heavier particle decays to the former plus left-handed (LH) neutrinos through the mixing between the scalar partners of the LH and RH neutrinos. However, the interaction is suppressed by the Planck mass, and if the LH-RH sneutrino mixing parameter is small, << O(10-2), a long-lived RH sneutrino NLSP is possible even surpassing the age of the Universe. As a byproduct, the NLSP to LSP decay produces monochromatic neutrinos in the ballpark of current and planned neutrino telescopes like Super-Kamiokande, IceCube and Antares that we use to set constraints and show prospects of detection. In the NMSSM+RHN, assuming a gluino mass parameter M3 = 3 TeV we found the following lower limits for the gravitino mass m3/2 >= 1-600 GeV and the reheating temperature TR >= 105-3 x 107 GeV, for m nu similar to R similar to 10-800 GeV. If we take M3 = 10 TeV, then the limits on TR are relaxed by one order of magnitude.
Address [Kim, Jong Soo] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa, Email: jongsoo.kim@tu-dortmund.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000975382300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5523
Permanent link to this record
 

 
Author Jackson, C.B.; Servant, G.; Shaughnessy, G.; Tait, T.M.P.; Taoso, M.
Title Higgs in space! Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 004 - 29pp
Keywords (down) dark matter theory; dark matter experiments; gamma ray experiments; cosmology of theories beyond the SM
Abstract We consider the possibility that the Higgs can be produced in dark matter annihilations, appearing as a line in the spectrum of gamma rays at an energy determined by the masses of the WIMP and the Higgs itself. We argue that this phenomenon occurs generally in models in which the the dark sector has large couplings to the most massive states of the SM and provide a simple example inspired by the Randall-Sundrum vision of dark matter, whose 4d dual corresponds to electroweak symmetry-breaking by strong dynamics which respect global symmetries that guarantee a stable WIMP. The dark matter is a Dirac fermion that couples to a Z' acting as a portal to the Standard Model through its strong coupling to top quarks. Annihilation into light standard model degrees of freedom is suppressed and generates a feeble continuum spectrum of gamma rays. Loops of top quarks mediate annihilation into gamma Z, gamma h, and gamma Z', providing a forest of lines in the spectrum. Such models can be probed by the Fermi/GLAST satellite and ground-based Air Cherenkov telescopes.
Address [Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M. P.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA, Email: jackson@hep.anl.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000277684600029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 454
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Schwetz, T.; Zupan, J.
Title On the annual modulation signal in dark matter direct detection Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 005 - 28pp
Keywords (down) dark matter theory; dark matter experiments; dark matter detectors
Abstract We derive constraints on the annual modulation signal in Dark Matter (DM) direct detection experiments in terms of the unmodulated event rate. A general bound independent of the details of the DM distribution follows from the assumption that the motion of the earth around the sun is the only source of time variation. The bound is valid for a very general class of particle physics models and also holds in the presence of an unknown unmodulated background. More stringent bounds are obtained, if modest assumptions on symmetry properties of the DM halo are adopted. We illustrate the bounds by applying them to the annual modulation signals reported by the DAMA and CoGeNT experiments in the framework of spin-independent elastic scattering. While the DAMA signal satisfies our bounds, severe restrictions on the DM mass can be set for CoGeNT.
Address [Herrero-Garcia, Juan; Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: juan.a.herrero@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000302949600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1000
Permanent link to this record
 

 
Author Strege, C.; Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R.
Title Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 030 - 22pp
Keywords (down) dark matter theory; dark matter experiments
Abstract We present new global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM), including LHC 1/fb integrated luminosity SUSY exclusion limits, recent LHC 5/fb constraints on the mass of the Higgs boson and XENON100 direct detection data. Our analysis fully takes into account astrophysical and hadronic uncertainties that enter the analysis when translating direct detection limits into constraints on the cMSSM parameter space. We provide results for both a Bayesian and a Frequentist statistical analysis. We find that LHC 2011 constraints in combination with XENON100 data can rule out a significant portion of the cMSSM parameter space. Our results further emphasise the complementarity of collider experiments and direct detection searches in constraining extensions of Standard Model physics. The LHC 2011 exclusion limit strongly impacts on low-mass regions of cMSSM parameter space, such as the stau co-annihilation region, while direct detection data can rule out regions of high SUSY masses, such as the Focus-Point region, which is unreachable for the LHC in the near future. We show that, in addition to XENON100 data, the experimental constraint on the anomalous magnetic moment of the muon plays a dominant role in disfavouring large scalar and gaugino masses. We find that, should the LHC 2011 excess hinting towards a Higgs boson at 126 GeV be confirmed, currently favoured regions of the cMSSM parameter space will be robustly ruled out from both a Bayesian and a profile likelihood statistical perspective.
Address [Strege, C.; Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000302949600030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1001
Permanent link to this record
 

 
Author Bozorgnia, N.; Herrero-Garcia, J.; Schwetz, T.; Zupan, J.
Title Halo-independent methods for inelastic dark matter scattering Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 049 - 15pp
Keywords (down) dark matter theory; dark matter experiments
Abstract We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.
Address [Bozorgnia, Nassim; Schwetz, Thomas] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: bozorgnia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000322582000050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1530
Permanent link to this record
 

 
Author Escudero, M.; Berlin, A.; Hooper, D.; Lin, M.X.
Title Toward (finally!) ruling out Z and Higgs mediated dark matter models Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 029 - 21pp
Keywords (down) dark matter theory; dark matter experiments
Abstract In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we fi nd that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Z mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m(D M) similar or equal to m(Z)/2) or greater than 200 GeV, or with a vector coupling and with m(DM) > 6TeV. Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m(DM) similar or equal to m(H) /2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.
Address [Escudero, Miguel] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000398395400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3040
Permanent link to this record