toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carrio, F.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Marin, C.; Moreno, P.; Sanchis, E.; Solans, C.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Optical Link Card Design for the Phase II Upgrade of TileCal Experiment Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 58 Issue 4 Pages 1657-1663  
  Keywords (up) High energy physics instrumentation computing; optical-fiber communication high-speed electronics; programmable logic devices  
  Abstract This paper presents the design of an optical link card developed in the frame of the R&D activities for the phase 2 upgrade of the TileCal experiment. This board, that is part of the evaluation of different technologies for the final choice in the next years, is designed as a mezzanine that can work independently or be plugged in the optical multiplexer board of the TileCal backend electronics. It includes two SNAP 12 optical connectors able to transmit and receive up to 75 Gb/s and one SFP optical connector for lower speeds and compatibility with existing hardware as the read out driver. All processing is done in a Stratix II GX field-programmable gate array (FPGA). Details are given on the hardware design, including signal and power integrity analysis, needed when working with these high data rates and on firmware development to obtain the best performance of the FPGA signal transceivers and for the use of the GBT protocol.  
  Address [Carrio, F; Gonzalez, V; Marin, C; Sanchis, E] Univ Valencia, Dept Elect Engn, E-46100 Valencia, Spain, Email: vicente.gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293975700037 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 722  
Permanent link to this record
 

 
Author Miñano, M. doi  openurl
  Title Radiation Hard Silicon Strips Detectors for the SLHC Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 58 Issue 3 Pages 1135-1140  
  Keywords (up) High energy physics; microstrip; radiation detectors; silicon; SLHC  
  Abstract While the Large Hadron Collider (LHC) began taking data in 2009, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2018. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrade, super-LHC (sLHC) of the ATLAS microstrip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and the detectors under study. This involves designing silicon detectors, irradiating them to the sLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS microstrip detector will be presented. Important challenges related to engineering layout, powering, cooling and reading out a very large strip detector are presented. Ideas on possible schemes for the layout and support mechanics will be shown.  
  Address IFIC UV CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mercedes.minano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291659300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 651  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A. url  doi
openurl 
  Title Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC Type Journal Article
  Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 698 Issue 5 Pages 353-370  
  Keywords (up) High-energy collider experiment; Long-lived particle; Highly ionising; New physics  
  Abstract A search is made for massive highly ionising particles with lifetimes in excess of 100 ns, with the ATLAS experiment at the Large Hadron Collider, using 3.1 pb(-1) of pp collision data taken at root s = 7 TeV. The signature of energy loss in the ATLAS inner detector and electromagnetic calorimeter is used. No such particles are found and limits on the production cross section for electric charges 6e <= vertical bar q vertical bar <= 17e and masses 200 GeV <= m <= 1000 GeV are set in the range 1-12 pb for different hypotheses on the production mechanism.  
  Address [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Portell Bueso, X.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany, Email: atlas.publications@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290185500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 629  
Permanent link to this record
 

 
Author Bandos, I.A.; de Azcarraga, J.A.; Meliveo, C. url  doi
openurl 
  Title Extended supersymmetry in massless conformal higher spin theory Type Journal Article
  Year 2011 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 853 Issue 3 Pages 760-776  
  Keywords (up) Higher spin theory; Conformal field theory; N-extended tensorial superspaces; Superfield theory  
  Abstract We propose superfield equations in tensorial N-extended superspaces to describe the N = 2,4,8 supersymmetric generalizations of free conformal higher spin theories. These can be obtained by quantizing a superparticle model in N-extended tensorial superspace. The N-extended higher spin supermultiplets just contain scalar and 'spinor' fields in tensorial space so that, in contrast with the standard (super)space approach, no nontrivial generalizations of the Maxwell or Einstein equations to tensorial space appear when N > 2. For N = 4,8, the higher spin-tensorial components of the extended tensorial superfields are expressed through additional scalar and spinor fields in tensorial space which obey the same free higher spin equations, but that are axion-like in the sense that they possess Peccei-Quinn-like symmetries.  
  Address [de Azcarraga, JA] CSIC UVEG, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: azcarrag@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295955100008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 781  
Permanent link to this record
 

 
Author Granero, D.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Dosimetry revisited for the HDR Ir-192 brachytherapy source model mHDR-v2 Type Journal Article
  Year 2011 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 38 Issue 1 Pages 487-494  
  Keywords (up) Ir-192; brachytherapy; dosimetry; TG-43; PSS model; MCNP5; PENELOPE2008; GEANT4  
  Abstract Purpose: Recently, the manufacturer of the HDR Ir-192 mHDR-v2 brachytherapy source reported small design changes (referred to herein as mHDR-v2r) that are within the manufacturing tolerances but may alter the existing dosimetric data for this source. This study aimed to (1) check whether these changes affect the existing dosimetric data published for this source; (2) obtain new dosimetric data in close proximity to the source, including the contributions from 192Ir electrons and considering the absence of electronic equilibrium; and (3) obtain scatter dose components for collapsed cone treatment planning system implementation. Methods: Three different Monte Carlo (MC) radiation transport codes were used: MCNP5, PENELOPE2008, and GEANT4. The source was centrally positioned in a 40 cm radius water phantom. Absorbed dose and collision kerma were obtained using 0.1 mm (0.5 mm) thick voxels to provide high-resolution dosimetry near (far from) the source. Dose-rate distributions obtained with the three MC codes were compared. Results: Simulations of mHDR-v2 and mHDR-v2r designs performed with three radiation transport codes showed agreement typically within 0.2% for r >= 0.25 cm. Dosimetric contributions from source electrons were significant for r<0.25 cm. The dose-rate constant and radial dose function were similar to those from previous MC studies of the mHDR-v2 design. The 2D anisotropy function also coincided with that of the mHDR-v2 design for r >= 0.25 cm. Detailed results of dose distributions and scatter components are presented for the modified source design. Conclusions: Comparison of these results to prior MC studies showed agreement typically within 0.5% for r >= 0.25 cm. If dosimetric data for r<0.25 cm are not needed, dosimetric results from the prior MC studies will be adequate. c 2011 American Association of Physicists in Medicine.  
  Address [Granero, Domingo] Hosp Gen Univ, Dept Radiat Phys, ERESA, E-46014 Valencia, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285769800050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 557  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva