Khosa, C. K., & Sanz, V. (2022). On the Impact of the LHC Run 2 Data on General Composite Higgs Scenarios. Adv. High. Energy Phys., 2022, 8970837–13pp.
Abstract: We study the impact of Run 2 LHC data on general composite Higgs scenarios, where nonlinear effects, mixing with additional scalars, and new fermionic degrees of freedom could simultaneously contribute to the modification of Higgs properties. We obtain new experimental limits on the scale of compositeness, the mixing with singlets and doublets with the Higgs, and the mass and mixing angle of top-partners. We also show that for scenarios where new fermionic degrees of freedom are involved in electroweak symmetry breaking, there is an interesting interplay among Higgs coupling measurements, boosted Higgs properties, SMEFT global analyses, and direct searches for single and double production of vector-like quarks.
|
Cranmer, K. et al, & Sanz, V. (2022). Publishing statistical models: Getting the most out of particle physics experiments. SciPost Phys., 12(1), 037–55pp.
Abstract: The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases – including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits – we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.
|
Donini, A., Enguita-Vileta, V., Esser, F., & Sanz, V. (2022). Generalising Holographic Superconductors. Adv. High. Energy Phys., 2022, 1785050–19pp.
Abstract: In this paper we propose a generalised holographic framework to describe superconductors. We first unify the description of s-, p-, and d-wave superconductors in a way that can be easily promoted to higher spin. Using a semianalytical procedure to compute the superconductor properties, we are able to further generalise the geometric description of the hologram beyond the AdS-Schwarzschild Black Hole paradigm and propose a set of higher-dimensional metrics which exhibit the same universal behaviour. We then apply this generalised description to study the properties of the condensate and the scaling of the critical temperature with the parameters of the higher-dimensional theory, which allows us to reproduce existing results in the literature and extend them to include a possible description of the newly observed f-wave superconducting systems.
|
Khosa, C. K., Sanz, V., & Soughton, M. (2022). A simple guide from machine learning outputs to statistical criteria in particle physics. SciPost Phys. Core, 5(4), 050–31pp.
Abstract: In this paper we propose ways to incorporate Machine Learning training outputs into a study of statistical significance. We describe these methods in supervised classification tasks using a CNN and a DNN output, and unsupervised learning based on a VAE. As use cases, we consider two physical situations where Machine Learning are often used: high-pT hadronic activity, and boosted Higgs in association with a massive vector boson.
|
Garcia Navarro, J. E., Fernandez-Prieto, L. M., Villaseñor, A., Sanz, V., Ammirati, J. B., Diaz Suarez, E. A., et al. (2022). Performance of Deep Learning Pickers in Routine Network Processing Applications. Seismol. Res. Lett., 93, 2529–2542.
Abstract: Picking arrival times of P and S phases is a fundamental and time‐consuming task for the routine processing of seismic data acquired by permanent and temporary networks. A large number of automatic pickers have been developed, but to perform well they often require the tuning of multiple parameters to adapt them to each dataset. Despite the great advance in techniques, some problems remain, such as the difficulty to accurately pick S waves and earthquake recordings with a low signal‐to‐noise ratio. Recently, phase pickers based on deep learning (DL) have shown great potential for event identification and arrival‐time picking. However, the general adoption of these methods for the routine processing of monitoring networks has been held back by factors such as the availability of well‐documented software, computational resources, and a gap in knowledge of these methods. In this study, we evaluate recent available DL pickers for earthquake data, comparing the performance of several neural network architectures. We test the selected pickers using three datasets with different characteristics. We found that the analyzed DL pickers (generalized phase detection, PhaseNet, and EQTransformer) perform well in the three tested cases. They are very efficient at ignoring large‐amplitude transient noise and at picking S waves, a task that is often difficult even for experienced analysts. Nevertheless, the performance of the analyzed DL pickers varies widely in terms of sensitivity and false discovery rate, with some pickers missing a significant percentage of true picks and others producing a large number of false positives. There are also variations in run time between DL pickers, with some of them requiring significant resources to process large datasets. In spite of these drawbacks, we show that DL pickers can be used efficiently to process large seismic datasets and obtain results comparable or better than current standard procedures.
|