|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.
Title Search for high mass dilepton resonances in pp collisions at root s=7 TeV with the ATLAS experiment Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 700 Issue 3-4 Pages 163-180
Keywords (up) Grand unified theory; Narrow resonance; New gauge boson; Z '; Dilepton; Mass spectrum
Abstract This Letter presents a search for high mass e(+)e(-) or mu(+)mu(-) resonances in pp collisions at root s = 7 TeV at the LHC. The data were recorded by the ATLAS experiment during 2010 and correspond to a total integrated luminosity of similar to 40 pb(-1). No statistically significant excess above the Standard Model expectation is observed in the search region of dilepton invariant mass above 110 GeV. Upper limits at the 95% confidence level are set on the cross section times branching ratio of Z' resonances decaying to dielectrons and dimuons as a function of the resonance mass. A lower mass limit of 1.048 TeV on the Sequential Standard Model Z' boson is derived, as well as mass limits on Z* and E(6)-motivated Z' models.
Address [Aad, G; Ahles, F; Beckingham, M; Bernhard, R; Bitenc, U; Bruneliere, R; Caron, S; Carpentieri, C; Christov, A; Dahlhoff, A; Dietrich, J; Eckert, S; Fehling-Kaschek, M; Flechl, M; Glatzer, JJ; Hartert, J; Heldmann, M; Herten, G; Jakobs, K; Ketterer, C; Kollefrath, M; Kononov, AI; Kuehn, S; Lai, S; Landgraf, U; Lohwasser, K; Ludwig, L; Ludwig, J; Lumb, D; Mahboubi, K; Meinhardt, J; Mohr, W; Nilsen, H; Parzefall, U; Bueso, XP; Rammensee, M; Runge, K; Rurikova, Z; Schmidt, E; Schumacher, M; Siegert, F; Stoerig, K; Sundermann, JE; Temming, KK; Thoma, S; Tobias, J; Tsiskaridze, V; Venturi, M; Vivarelli, I; von Radziewski, H; Warsinsky, M; Weiser, C; Werner, M; Wiik, LAM; Winkelmann, S; Xie, S; Zimmermann, S] Univ Freiburg, Fak Math & Phys, Freiburg, Germany
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000292586400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 806
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title A first test of the framed standard model against experiment Type Journal Article
Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 30 Issue 11 Pages 1550051 - 34pp
Keywords (up) Higgs boson; fermion generations; mixing and neutrino oscillations; mass hierarchy; vielbeins
Abstract The framed standard model (FSM) is obtained from the standard model by incorporating, as field variables, the frame vectors (vielbeins) in internal symmetry space. It gives the standard Higgs boson and 3 generations of quarks and leptons as immediate consequences. It gives moreover a fermion mass matrix of the form: m = mT alpha alpha dagger, where alpha is a vector in generation space independent of the fermion species and rotating with changing scale, which has already been shown to lead, generically, to up-down mixing, neutrino oscillations and mass hierarchy. In this paper, pushing the FSM further, one first derives to 1-loop order the RGE for the rotation of alpha, and then applies it to fit mass and mixing data as a first test of the model. With 7 real adjustable parameters, 18 measured quantities are fitted, most (12) to within experimental error or to better than 0.5 percent, and the rest (6) not far off. (A summary of this fit can be found in Table 2 of this paper.) Two notable features, both generic to FSM, not just specific to the fit, are: (i) that a theta-angle of order unity in the instanton term in QCD would translate via rotation into a Kobayashi-Maskawa phase in the CKM matrix of about the observed magnitude (J similar to 10(-5)), (ii) that it would come out correctly that m(u) < m(d), despite the fact that m(t) >> m(b), m(c) >> m(s). Of the 18 quantities fitted, 12 are deemed independent in the usual formulation of the standard model. In fact, the fit gives a total of 17 independent parameters of the standard model, but 5 of these have not been measured by experiment.
Address [Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000352992800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2187
Permanent link to this record
 

 
Author Figueroa, D.G.; Raatikainen, S.; Rasanen, S.; Tomberg, E.
Title Implications of stochastic effects for primordial black hole production in ultra-slow-roll inflation Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 027 - 48pp
Keywords (up) inflation; primordial black holes; dark matter theory; massive black holes
Abstract We study the impact of stochastic noise on the generation of primordial black hole (PBH) seeds in ultra-slow-roll (USR) inflation with numerical simulations. We consider the non-linearity of the system by consistently taking into account the noise dependence on the inflaton perturbations, while evolving the perturbations on the coarse-grained background affected by the noise. We capture in this way the non-Markovian nature of the dynamics, and demonstrate that non-Markovian effects are subleading. Using the Delta N formalism, we find the probability distribution P(R) of the comoving curvature perturbation R. We consider inflationary potentials that fit the CMB and lead to PBH dark matter with i) asteroid, ii) solar, or iii) Planck mass, as well as iv) PBHs that form the seeds of supermassive black holes. We find that stochastic effects enhance the PBH abundance by a factor of O(10)-O(10(8)), depending on the PBH mass. We also show that the usual approximation, where stochastic kicks depend only on the Hubble rate, either underestimates or overestimates the abundance by orders of magnitude, depending on the potential. We evaluate the gauge dependence of the results, discuss the quantum-to-classical transition, and highlight open issues of the application of the stochastic formalism to USR inflation.
Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueoa@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804493000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5239
Permanent link to this record
 

 
Author Kulikov, I.; Algora, A.; Atanasov, D.; Ascher, P.; Blaum, K.; Cakirli, R.B.; Herlert, A.; Huang, W.J.; Karthein, J.; Litvinov, Y.A.; Lunney, D.; Manea, V.; Mougeot, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.
Title Masses of short-lived Sc-49, Sc-50, As-70, Br-73 and stable Hg-196 nuclides Type Journal Article
Year 2020 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 1002 Issue Pages 121990 - 15pp
Keywords (up) ISOLTRAP; Mass measurements; Atomic mass evaluation; Multi-reflection time-of-flight; Penning trap mass spectrometry
Abstract Mass measurements of Sc-49,Sc-50, As-70, Br-73 and Hg-196 nuclides produced at CERN's radioactive-ion beam facility ISOLDE are presented. The measurements were performed at the ISOLTRAP mass spectrometer by use of the multi-reflection time-of-flight and the Penning-trap mass spectrometry techniques. The new results agree well with previously known literature values. The mass accuracy for all cases has been improved.
Address [Kulikov, I; Litvinov, Yu A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany, Email: ivan.kulikov@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000567817300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4528
Permanent link to this record
 

 
Author Bonilla, J. et al; Vos, M.
Title Jets and Jet Substructure at Future Colliders Type Journal Article
Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 10 Issue Pages 897719 - 17pp
Keywords (up) jets; jet substructure; collider; artificial intelligence; machine learning; snowmass; top quark; Higgs boson
Abstract Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.
Address [Bonilla, Johan; Erbacher, Robin] Univ Calif, Dept Phys & Astron, Davis, CA USA, Email: bpnachman@lbl.gov;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000822618100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5464
Permanent link to this record