|   | 
Details
   web
Records
Author Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title The fluorescence detector of the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 620 Issue 2-3 Pages 227-251
Keywords (down) Cosmic rays; Fluorescence detector
Abstract The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.
Address [Bohacova, M.; Chudoba, J.; Grygar, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic, Email: prouza@fzu.cz
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000280601700018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 400
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS) Type Journal Article
Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 35 Issue 9 Pages 591-607
Keywords (down) Cosmic rays; Extensive air showers; Atmospheric monitoring; Atmospheric models
Abstract Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.
Address [Baeuml, J.; Bluemer, H.; Daumiller, K.; Engel, R.; Gonzalez, J. G.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Maurel, D.; Oehlschlaeger, J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Weindl, A.; Werner, F.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: bianca.keilhauer@kit.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000302109200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 965
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 33 Issue 2 Pages 108-129
Keywords (down) Cosmic rays; Extensive air showers; Air fluorescence method; Atmosphere; Aerosols; Lidar; Bi-static lidar
Abstract The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements oil air shower reconstructions. Between 10(18) and 10(20) eV, the systematic Uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g cm(-2) to 8 g cm(-2) in measurements of the shower maximum.
Address [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI 53706 USA, Email: sybenzvi@icecube.wisc.cdu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000275514800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 486
Permanent link to this record
 

 
Author ANTARES and IceCube Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J.
Title Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes Type Journal Article
Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 868 Issue 2 Pages L20 - 7pp
Keywords (down) cosmic rays; diffusion; Galaxy: disk; gamma rays: diffuse background; neutrinos
Abstract The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRA(gamma) model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No significant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.
Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokeperson@in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000450844500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3807
Permanent link to this record
 

 
Author AMON and ANTARES Collaborations (Ayala Solares, H.A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data Type Journal Article
Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 886 Issue 2 Pages 98 - 8pp
Keywords (down) BL Lacertae objects: general; cosmic rays; gamma-ray burst: general; gamma rays: general; neutrinos
Abstract We analyze 7.3 yr of ANTARES high-energy neutrino and Fermi Large Area Telescope (LAT) gamma-ray data in search of cosmic neutrino + gamma-ray (nu + gamma) transient sources or source populations. Our analysis has the potential to detect either individual nu + gamma transient sources (durations delta t less than or similar to 1000 s), if they exhibit sufficient gamma-ray or neutrino multiplicity, or a statistical excess of nu + gamma transients of individually lower multiplicities. Individual high gamma-ray multiplicity events could be produced, for example, by a single ANTARES neutrino in coincidence with a LAT-detected gamma-ray burst. Treating ANTARES track and cascade event types separately, we establish detection thresholds by Monte Carlo scrambling of the neutrino data, and determine our analysis sensitivity by signal injection against these scrambled data sets. We find our analysis is sensitive to nu + gamma transient populations responsible for >5% of the observed gamma-coincident neutrinos in the track data at 90% confidence. Applying our analysis to the unscrambled data reveals no individual nu + gamma events of high significance; two ANTARES track + Fermi gamma-ray events are identified that exceed a once per decade false alarm rate threshold (p = 17%). No evidence for subthreshold nu + gamma source populations is found among the track (p = 39%) or cascade (p = 60%) events. Exploring a possible correlation of high-energy neutrino directions with Fermi gamma-ray sky brightness identified in previous work yields no added support for this correlation. While TXS.0506+056, a blazar and variable (nontransient) Fermi gamma-ray source, has recently been identified as the first source of high-energy neutrinos, the challenges in reconciling observations of the Fermi gamma-ray sky, the IceCube high-energy cosmic neutrinos, and ultrahigh-energy cosmic rays using only blazars suggest a significant contribution by other source populations. Searches for transient sources of high-energy neutrinos thus remain interesting, with the potential for either neutrino clustering or multimessenger coincidence searches to lead to discovery of the first nu + gamma transients.
Address [Solares, H. A. Ayala; Cowen, D. F.; DeLaunay, J. J.; Keivani, A.; Mostafa, M.; Murase, K.; Turley, C. F.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: cft114@psu.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000503245500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4227
Permanent link to this record