|   | 
Details
   web
Records
Author Gao, F.; Oldengott, I.M.
Title Cosmology Meets Functional QCD: First-Order Cosmic QCD Transition Induced by Large Lepton Asymmetries Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue 13 Pages 131301 - 6pp
Keywords (down)
Abstract The lepton flavor asymmetries of the Universe are observationally almost unconstrained before the onset of neutrino oscillations. We calculate the cosmic trajectory during the cosmic QCD epoch in the presence of large lepton flavor asymmetries. By including QCD thermodynamic quantities derived from functional QCD methods in our calculation, our work reveals for the first time the possibility of a first-order cosmic QCD transition. We specify the required values of the lepton flavor asymmetries for which a first-order transition occurs for a number of different benchmark scenarios.
Address [Gao, Fei] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany, Email: f.gao@thphys.uni-heidelberg.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000791077600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5224
Permanent link to this record
 

 
Author Delhom, A.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J.
Title Radiative corrections in metric-affine bumblebee model Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 826 Issue Pages 136932 - 9pp
Keywords (down)
Abstract We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric which, besides the zeroth-order Minkowskian contribution, also has the vector field contributions of the bumblebee, and show that it is renormalizable at one-loop level. From our analysis it also follows that the non-metricity of this theory is determined by the gradient of the bumblebee field, and that it can acquire a vacuum expectation value due to the contribution of the bumblebee field.
Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: adria.delhom@uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000792884500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5229
Permanent link to this record
 

 
Author Capozzi, F.; Petcov, S.T.
Title Neutrino tomography of the Earth with ORCA detector Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 5 Pages 461 - 23pp
Keywords (down)
Abstract Using PREM as a reference model for the Earth density distribution we investigate the sensitivity of ORCA detector to deviations of the Earth (i) outer core (OC) density, (ii) inner core (IC) density, (iii) total core density, and (iv) mantle density, from their respective PREM densities. The analysis is performed by studying the effects of the Earth matter on the oscillations of atmospheric nu(mu), nu(e), (nu) over bar (mu) and (nu) over bar (e). We present results which illustrate the dependence of the ORCA sensitivity to the OC, IC, core and mantle densities on the type of systematic uncertainties used in the analysis, on the value of the atmospheric neutrino mixing angle theta(23), on whether the Earth mass constraint is implemented or not, and on the way it is implemented, and on the type – with normal ordering (NO) or inverted ordering (IO) – of the light neutrino mass spectrum. We show, in particular, that in the “most favorable” NO case of implemented Earth mass constraint, “minimal” systematic errors and sin(2) theta(23) = 0.58, ORCA can determine, e.g., the OC (mantle) density at 3 sigma C.L. after 10 years of operation with an uncertainty of (- 18%)/+ 15% (of (- 6%)/+ 8%). In the “most disfavorable” NO case of “conservative” systematic errors and sin(2) theta(23) = 0.42, the uncertainty on OC (mantle) density reads (- 43%)/+ 39% ((- 17%/+ 20%), while for for sin(2) theta(23) = 0.50 and 0.58 it is noticeably smaller: (- 37)%/+ 30% and (- 30%)/+ 24% ((- 13%)/+ 16% and (- 11%/+ 14%)). We find also that the sensitivity of ORCA to the OC, core and mantle densities is significantly worse for IO neutrino mass spectrum.
Address [Capozzi, F.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: petcov@sissa.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000799527200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5232
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Measurement of the Nuclear Modification Factor and Prompt Charged Particle Production in p-Pb and pp Collisions at root s(NN )=5 TeV Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue 14 Pages 142004 - 12pp
Keywords (down)
Abstract The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon center-of-mass energy root s(NN) = 5 TeV is studied at LHCb as a function of pseudorapidity (eta) and transverse momentum (p(T) ) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of eta between -4.8 < eta < -2.5 (backward region) and 2.0 < eta < 4.8 (forward region), and p(T) between 0.2 < p(T) < 8.0 GeV/c. The results show a suppression of charged particle production in proton-lead collisions relative to proton-proton collisions in the forward region and an enhancement in the backward region for p(T) larger than 1.5 GeV/c. This measurement constrains nuclear PDFs and saturation models at previously unexplored values of the parton momentum fraction down to 10(-6).
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000792795000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5233
Permanent link to this record
 

 
Author Camarda, S.; Cieri, L.; Ferrera, G.; Urtasun-Elizari, J.
Title Higgs boson production at the LHC: fast and precise predictions in QCD at higher orders Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 5 Pages 492 - 8pp
Keywords (down)
Abstract We present a new numerical program, HTurbo, which provides fast and numerically precise predictions for Higgs boson production cross sections. The present version of the code implements the perturbative QCD expansion up to the next-to-next-to-leading order also combined with the resummation of the large logarithmic corrections at small transverse momenta up to next-to-next-to-leading logarithmic accuracy and it includes the Higgs boson production through gluon fusion and decay in two photons with the full dependence on the final-state kinematics. Arbitrary kinematical cuts can be applied to the final states in order to obtain fiducial cross sections and associated kinematical distributions. We present a benchmark comparison with the predictions obtained with the numerical programs HRes and HNNLO programs for which HTurbo represents an improved reimplementation.
Address [Camarda, Stefano] CERN, CH-1211 Geneva, Switzerland, Email: giancarlo.ferrera@mi.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000800789000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5234
Permanent link to this record