toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chakraborty, S.; Gupta, A.; Vanvlasselaer, M. url  doi
openurl 
  Title Anomaly induced cooling of neutron stars: a Standard Model contribution Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 030 - 23pp  
  Keywords (down) neutron stars; neutrino theory  
  Abstract Young neutron stars cool via the emission of neutrinos from their core. A precise understanding of all the different processes producing neutrinos in the hot and degenerate matter is essential for assessing the cooling rate of such stars. The main Standard Model processes contributing to this effect are nu bremsstrahlung, mURCA among others. In this paper, we investigate another Standard Model process initiated by the Wess-Zumino-Witten term, leading to the emission of neutrino pairs via N gamma -> N nu nu over bar . We find that for proto-neutron stars, such processes with degenerate neutrons can be comparable and even dominate over the typical and well-known cooling mechanisms.  
  Address [Chakraborty, Sabyasachi] Indian Inst Technol, Dept Phys, Kanpur 208016, India, Email: sabyac@iitk.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001116545800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5872  
Permanent link to this record
 

 
Author n_TOF Collaboration (Praena, J. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Preparation and characterization of S-33 samples for S-33(n,alpha)Si-30 cross-section measurements at the n_TOF facility at CERN Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 890 Issue Pages 142-147  
  Keywords (down) Neutron induced alpha emission; Thermal evaporation; Rutherford backscattering  
  Abstract Thin S-33 samples for the study of the S-33(n,alpha)Si-30 cross-section at the n_TOF facility at CERN were made by thermal evaporation of S-33 powder onto a dedicated substrate made of kapton covered with thin layers of copper, chromium and titanium. This method has provided for the first time bare sulfur samples a few centimeters in diameter. The samples have shown an excellent adherence with no mass loss after few years and no sublimation in vacuum at room temperature. The determination of the mass thickness of S-33 has been performed by means of Rutherford backscattering spectrometry. The samples have been successfully tested under neutron irradiation.  
  Address [Praena, J.; Porras, I.] Univ Granada, Granada, Spain, Email: jpraena@ugr.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427814900020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3537  
Permanent link to this record
 

 
Author Rasco, B.C.; Brewer, N.T.; Yokoyama, R.; Grzywacz, R.; Rykaczewski, K.P.; Tolosa-Delgado, A.; Agramunt, J.; Tain, J.L.; Algora, A.; Hall, O.; Griffin, C.; Davinson, T.; Phong, V.H.; Liu, J.; Nishimura, S.; Kiss, G.G.; Nepal, N.; Estrade, A. url  doi
openurl 
  Title The ORNL analysis technique for extracting beta-delayed multi-neutron branching ratios with BRIKEN Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 911 Issue Pages 79-86  
  Keywords (down) Neutron detectors; Multi-neutron emission data analysis  
  Abstract Many choices are available in order to evaluate large radioactive decay networks. There are many parameters that influence the calculated beta-decay delayed single and multi-neutron emission branching fractions. We describe assumptions about the decay model, background, and other parameters and their influence on beta-decay delayed multi-neutron emission analysis. An analysis technique, the ORNL BRIKEN analysis procedure, for determining beta-delayed multi-neutron branching ratios in beta-neutron precursors produced by means of heavy-ion fragmentation is presented. The technique is based on estimating the initial activities of zero, one, and two neutrons occurring in coincidence with an ion-implant and beta trigger. The technique allows one to extract beta-delayed multi-neutron decay branching ratios measured with the He-3 BRIKEN neutron counter. As an example, two analyses of the beta-neutron emitter Cu-77 based on different a priori assumptions are presented along with comparisons to literature values.  
  Address [Rasco, B. C.; Brewer, N. T.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA, Email: brasco@utk.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450880200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3813  
Permanent link to this record
 

 
Author Mendoza, E.; Alcayne, V.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A.P.; Sanchez-Caballero, A.; Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Calvino, F.; Guerrero, C. doi  openurl
  Title Neutron capture measurements with high efficiency detectors and the Pulse Height Weighting Technique Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1047 Issue Pages 167894 - 16pp  
  Keywords (down) Neutron capture; Total energy detector; Pulse height weighting technique; 7-ray cascades  
  Abstract Neutron capture cross section measurements in time-of-flight facilities are usually performed by detecting the prompt 7-rays emitted in the capture reactions. One of the difficulties to be addressed in these measurements is that the emitted 7-rays may change with the neutron energy, and therefore also the detection efficiency. To deal with this situation, many measurements use the so called Total Energy Detection (TED) technique, usually in combination with the Pulse Height Weighting Technique (PHWT). With it, it is sought that the detection efficiency depends only on the total energy of the 7-ray cascade, which does not vary much with the neutron energy. This technique was developed in the 1960s and has been used in many neutron capture experiments to date. One of the requirements of the technique is that 7-ray detectors have a low efficiency. This has meant that the PHWT has been used with experimental setups with low detection efficiencies. However, this condition does not have to be fulfilled by the experimental system as a whole. The main goal of this work is to show that it is possible to measure with a high efficiency detection system that uses the PHWT, and how to analyze the measured data.  
  Address [Mendoza, E.; Alcayne, V; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Perez de Rada, A.; Sanchez-Caballero, A.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000908431800002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5468  
Permanent link to this record
 

 
Author n_TOF Collaboration (Alcayne, V. et al); Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Ladarescu, I. url  doi
openurl 
  Title A Segmented Total Energy Detector (sTED) optimized for (n,γ) cross-section measurements at n_TOF EAR2 Type Journal Article
  Year 2024 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 217 Issue Pages 11pp  
  Keywords (down) Neutron capture; PHWT; Scintillation detectors; Monte Carlo simulation  
  Abstract The neutron time-of-flight facility nTOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at nTOF EAR2.  
  Address [Alcayne, V.; Cano-Ott, D.; Garcia, J.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A. Perez; Plaza, J.; Sanchez-Caballero, A.; Mendoza, E.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain, Email: victor.alcayne@ciemat.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185584800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5999  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva