toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Unno, Y. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U. doi  openurl
  Title Specifications and pre-production of n plus -in-p large-format strip sensors fabricated in 6-inch silicon wafers, ATLAS18, for the Inner Tracker of the ATLAS Detector for High-Luminosity Large Hadron Collider Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 3 Pages T03008 - 29pp  
  Keywords (down) Particle tracking detectors (Solid-state detectors); Radiation-hard detectors; Si microstrip and pad detectors  
  Abstract The ATLAS experiment is constructing new all-silicon inner tracking system for HL-LHC. The strip detectors cover the radial extent of 40 to 100 cm. A new approach is adopted to use p-type silicon material, making the readout in n+-strips, so-called n+-in-p sensors. This allows for enhanced radiation tolerance against an order of magnitude higher particle fluence compared to the LHC. To cope with varying hit rates and occupancies as a function of radial distance, there are two barrel sensor types, the short strips (SS) for the inner 2 and the long strips (LS) for the outer 2 barrel cylinders, respectively. The barrel sensors exhibit a square, 9.8 x 9.8 cm2, geometry, the largest possible sensor area from a 6-inch wafer. The strips are laid out in parallel with a strip pitch of 75.5 μm and 4 or 2 rows of strip segments. The strips are AC-coupled and biased via polysilicon resistors. The endcap sensors employ a “stereo-annulus” geometry exhibiting a skewed-trapezoid shapes with circular edges. They are designed in 6 unique shapes, R0 to R5, corresponding to progressively increasing radial extents and which allows them to fit within the petal geometry and the 6-inch wafer maximally. The strips are in fan-out geometry with an in-built rotation angle, with a mean pitch of approximately 75 μm and 4 or 2 rows of strip segments. The eight sensor types are labeled as ATLAS18xx where xx stands for SS, LS, and R0 to R5. According to the mechanical and electrical specifications, CAD files for wafer processing were laid out, following the successful designs of prototype barrel and endcap sensors, together with a number of optimizations. A pre-production was carried out prior to the full production of the wafers. The quality of the sensors is reviewed and judged excellent through the test results carried out by vendor. These sensors are used for establishing acceptance procedures and to evaluate their performance in the ATLAS collaboration, and subsequently for pre-production of strip modules and stave and petal structures.  
  Address [Allport, P. P.; Chisholm, A.; George, W.; Gonella, L.; Kopsalis, I.; Lomas, J.] Univ Birmingham, Sch Phys & Astron, Birmingham B152TT, England, Email: yoshinobu.unno@kek.jp  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000974242700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5522  
Permanent link to this record
 

 
Author Ruhr, F. et al; Escobar, C.; Miñano, M. doi  openurl
  Title Testbeam studies of barrel and end-cap modules for the ATLAS ITk strip detector before and after irradiation Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 979 Issue Pages 164430 - 6pp  
  Keywords (down) Particle physics; Tracking detectors; ATLAS; HL-LHC; Test beam  
  Abstract In order to cope with the occupancy and radiation doses expected at the High-Luminosity LHC, the ATLAS experiment will replace its Inner Detector with an all-silicon Inner Tracker (ITk), consisting of pixel and strip subsystems. In the last two years, several prototype ITk strip modules have been tested using beams of high energy electrons produced at the DESY-II testbeam facility. Tracking was provided by EUDET telescopes. The modules tested are built from two sensor types: the rectangular ATLAS17LS, which will be used in the outer layers of the central barrel region of the detector, and the annular ATLAS12EC, which will be used in the innermost ring (R0) of the forward region. Additionally, a structure with two RO modules positioned back-to-back has been measured, demonstrating space point reconstruction using the stereo angle of the strips. Finally, one barrel and one RO module have been measured after irradiation to 40% beyond the expected end-of-lifetime fluence. The data obtained allow for thorough tests of the module performance, including charge collection, noise occupancy, detection efficiency, and tracking performance. The results give confidence that the ITk strip detector will meet the requirements of the ATLAS experiment.  
  Address [Ruehr, F.; Argos, C. Garcia; Hauser, M.; Moos, F.; Rodriguez, A. Rodriguez; Sperlich, D.; Wiik-Fuchs, L.] Albert Ludwigs Univ Freiburg, Phys Inst, Freiburg, Germany, Email: frederik.ruehr@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000573295200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4548  
Permanent link to this record
 

 
Author AbdusSalam, S.S. et al; Eberhardt, O. url  doi
openurl 
  Title Simple and statistically sound recommendations for analysing physical theories Type Journal Article
  Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 85 Issue 5 Pages 052201 - 11pp  
  Keywords (down) particle physics; statistics; methodology  
  Abstract Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.  
  Address [AbdusSalam, Shehu S.; Fowlie, Andrew] Shahid Beheshti Univ, Dept Phys, Tehran, Iran, Email: andrew.j.fowlie@njnu.edu.cn  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791574900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5221  
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F.; Valkenburg, W. url  doi
openurl 
  Title The art of simulating the early universe. Part I. Integration techniques and canonical cases Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 035 - 108pp  
  Keywords (down) particle physics – cosmology connection; physics of the early universe; cosmological phase transitions; inflation  
  Abstract We present a comprehensive discussion on lattice techniques for the simulation of scalar and gauge field dynamics in an expanding universe. After reviewing the continuum formulation of scalar and gauge field interactions in Minkowski and FLRW backgrounds, we introduce the basic tools for the discretization of field theories, including lattice gauge invariant techniques. Following, we discuss and classify numerical algorithms, ranging from methods of O(delta t(2)) accuracy like staggered leapfrog and Verlet integration, to Runge-Kutta methods up to O(delta t(4)) accuracy, and the Yoshida and Gauss-Legendre higher-order integrators, accurate up to O(delta t(10)) We adapt these methods for their use in classical lattice simulations of the non-linear dynamics of scalar and gauge fields in an expanding grid in 3+1 dimensions, including the case of 'self-consistent' expansion sourced by the volume average of the fields' energy and pressure densities. We present lattice formulations of canonical cases of: i) Interacting scalar fields, ii) Abelian U(1) gauge theories, and iii) Non-Abelian SU(2) gauge theories. In all three cases we provide symplectic integrators, with accuracy ranging from O(delta t(2)) up to O(delta t(10)) For each algorithm we provide the form of relevant observables, such as energy density components, field spectra and the Hubble constraint. We note that all our algorithms for gauge theories always respect the Gauss constraint to machine precision, including when 'self-consistent' expansion is considered. As a numerical example we analyze the post-inflationary dynamics of an oscillating inflaton charged under SU(2) x U(1). We note that the present manuscript is meant to be part of the theoretical basis for the code CosmoLattice, a multi-purpose MPI-based package for simulating the non-linear evolution of field theories in an expanding universe, publicly available at http://www.cosrnolattice.net.  
  Address [Figueroa, Daniel G.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000644501000026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4822  
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P. url  doi
openurl 
  Title A fresh look into the interacting dark matter scenario Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 007 - 35pp  
  Keywords (down) particle physics – cosmology connection; dwarfs galaxies; reionization; dark matter theory  
  Abstract The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter photon elastic scattering cross section of sigma gamma DM < 8 x 10(-10) sigma(T) (m(DM)/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.  
  Address [Escudero, Miguel; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000434381500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3612  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva