toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dias, J.M.; Debastiani, V.R.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title The radiative decay D-0 -> (K)over-bar*(0)gamma with vector meson dominance Type Journal Article
  Year 2018 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 42 Issue 4 Pages 043106 - 7pp  
  Keywords (down) radiative decay; vector meson dominance; local hidden gauge symmetry  
  Abstract Motivated by the experimental measurements of D-0 radiative decay modes, we have proposed a model to study the D-0 -> (K) over bar*(0)gamma decay, by establishing a link with D-0 -> (K) over bar*(0) V (V = rho(0), omega) decays through the vector meson dominance hypothesis. In order to do this properly, we have used the Lagrangians from the local hidden gauge symmetry approach to account for V gamma conversion. As a result, we have found the branching ratio B[D-0 -> (K) over bar*(0)gamma]=(1.55-3.44)x10(-4), which is in fair agreement with the experimental values reported by the Belle and BaBar collaborations.  
  Address [Dias, J. M.; Debastiani, V. R.; Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China, Email: jdias@if.usp.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430884300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3572  
Permanent link to this record
 

 
Author Oliver, S.; Rodriguez Bosca, S.; Gimenez-Alventosa, V. doi  openurl
  Title Enabling particle transport on CAD-based geometries for radiation simulations with penRed Type Journal Article
  Year 2024 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 298 Issue Pages 109091 - 11pp  
  Keywords (down) Radiation transport; PENELOPE physics; Monte Carlo simulation; PenRed; CAD; Triangular surface mesh  
  Abstract Geometry construction is a fundamental aspect of any radiation transport simulation, regardless of the Monte Carlo code being used. Typically, this process is tedious, time-consuming, and error-prone. The conventional approach involves defining geometries using mathematical objects or surfaces. However, this method comes with several limitations, especially when dealing with complex models, particularly those with organic shapes. Furthermore, since each code employs its own format and methodology for defining geometries, sharing and reproducing simulations among researchers becomes a challenging task. Consequently, many codes have implemented support for simulating over geometries constructed via Computer-Aided Design (CAD) tools. Unfortunately, this feature is lacking in penRed and other PENELOPE physics-based codes. Therefore, the objective of this work is to implement such support within the penRed framework. New version program summary Program Title: Parallel Engine for Radiation Energy Deposition (penRed) CPC Library link to program files: https://doi.org/10.17632/rkw6tvtngy.2 Developer's repository link: https://github.com/PenRed/PenRed Code Ocean capsule: https://codeocean.com/capsule/1041417/tree Licensing provisions: GNU Affero General Public License v3 Programming language: C++ standard 2011. Journal reference of previous version: V. Gimenez-Alventosa, V. Gimenez Gomez, S. Oliver, PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE, Computer Physics Communications 267 (2021) 108065. doi:https://doi.org/10.1016/j.cpc.2021.108065. Does the new version supersede the previous version?: Yes Reasons for the new version: Implements the capability to simulate on CAD constructed geometries, among many other features and fixes. Summary of revisions: All changes applied through the code versions are summarized in the file CHANGELOG.md in the repository package. Nature of problem: While Monte Carlo codes have proven valuable in simulating complex radiation scenarios, they rely heavily on accurate geometrical representations. In the same way as many other Monte Carlo codes, penRed employs simple geometric quadric surfaces like planes, spheres and cylinders to define geometries. However, since these geometric models offer a certain level of flexibility, these representations have limitations when it comes to simulating highly intricate and irregular shapes. Anatomic structures, for example, require detailed representations of organs, tissues and bones, which are difficult to achieve using basic geometric objects. Similarly, complex devices or intricate mechanical systems may have designs that cannot be accurately represented within the constraints of such geometric models. Moreover, when the complexity of the model increases, geometry construction process becomes more difficult, tedious, time-consuming and error-prone [2]. Also, as each Monte Carlo geometry library uses its own format and construction method, reproducing the same geometry among different codes is a challenging task. Solution method: To face the problems stated above, the objective of this work is to implement the capability to simulate using irregular and adaptable meshed geometries in the penRed framework. This kind of meshes can be constructed using Computer-Aided Design (CAD) tools, the use of which is very widespread and streamline the design process. This feature has been implemented in a new geometry module named “MESH_BODY” specific for this kind of geometries. This one is freely available and usable within the official penRed package1. It can be used since penRed version 1.9.3b and above.  
  Address [Oliver, S.] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental ISIRY, Cami Vera S-N, Valencia 46022, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001172840800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6077  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Oliver, S. doi  openurl
  Title PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE Type Journal Article
  Year 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 267 Issue Pages 108065 - 12pp  
  Keywords (down) Radiation transport; Monte Carlo simulation; Electron-photon showers; Parallel computing; MPI; Medical physics  
  Abstract Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kinds of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, standalone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming language and takes advantage of modern object-oriented technologies. In addition, PenRed offers the capability to read and process DICOM images as well as to construct and simulate image-based voxelized geometries, so as to facilitate its usage in medical applications. Our framework has been successfully verified against the original PENELOPE Fortran code. Furthermore, the implemented parallelism has been tested showing a significant improvement in the simulation time without any loss in precision of results. Program summary Program title: PenRed: Parallel Engine for Radiation Energy Deposition. CPC Library link to program files: https://doi .org /10 .17632/rkw6tvtngy.1 Licensing provision: GNU Affero General Public License (AGPL). Programming language: C++ standard 2011. Nature of problem: Monte Carlo simulations usually require a huge amount of computation time to achieve low statistical uncertainties. In addition, many applications necessitate particular characteristics or the extraction of specific quantities from the simulation. However, most available Monte Carlo codes do not provide an efficient parallel and truly modular structure which allows users to easily customise their code to suit their needs without an in-depth knowledge of the code system. Solution method: PenRed is a fully parallel, modular and customizable framework for Monte Carlo simulations of the passage of radiation through matter. It is based on the PENELOPE [1] code system, from which inherits its unique physics models and tracking algorithms for charged particles. PenRed has been coded in C++ following an object-oriented programming paradigm restricted to the C++11 standard. Our engine implements parallelism via a double approach: on the one hand, by using standard C++ threads for shared memory, improving the access and usage of the memory, and, on the other hand, via the MPI standard for distributed memory infrastructures. Notice that both kinds of parallelism can be combined together in the same simulation. Moreover, both threads and MPI processes, can be balanced using the builtin load balance system (RUPER-LB [30]) to maximise the performance on heterogeneous infrastructures. In addition, PenRed provides a modular structure with methods designed to easily extend its functionality. Thus, users can create their own independent modules to adapt our engine to their needs without changing the original modules. Furthermore, user extensions will take advantage of the builtin parallelism without any extra effort or knowledge of parallel programming. Additional comments including restrictions and unusual features: PenRed has been compiled in linux systems withg++ of GCC versions 4.8.5, 7.3.1, 8.3.1 and 9; clang version 3.4.2 and intel C++ compiler (icc) version 19.0.5.281. Since it is a C++11-standard compliant code, PenRed should be able to compile with any compiler with C++11 support. In addition, if the code is compiled without MPI support, it does not require any non standard library. To enable MPI capabilities, the user needs to install whatever available MPI implementation, such as openMPI [24] or mpich [25], which can be found in the repositories of any linux distribution. Finally, to provide DICOM processing support, PenRed can be optionally compiled using the dicom toolkit (dcmtk) [32] library. Thus, PenRed has only two optional dependencies, an MPI implementation and the dcmtk library.  
  Address [Gimenez-Alventosa, V] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Ctr Mixto CSIC, Cami Vera S-N, Valencia 46022, Spain, Email: vicent.gimenez@i3m.upv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000678508900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4907  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Oyanguren, A.; Ruiz Valls, P. url  doi
openurl 
  Title Production of J/psi and Y mesons in pp collisions at root s=8 TeV Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 064 - 31pp  
  Keywords (down) Quarkonium; Heavy quark production; Particle and resonance production; Hadron-Hadron Scattering; Flavor physics  
  Abstract The production of J/psi and gamma mesons in pp collisions at root s = 8 TeV is studied with the LHCb detector. The J/psi and gamma mesons are reconstructed in the mu(+)mu(-) decay mode and the signal yields are determined with a fit to the mu(+)mu(-) invariant mass distributions. The analysis is performed in the rapidity range 2.0 < y < 4.5 and transverse momentum range 0 < PT < 14 (15) GeV/c of the J/psi (gamma) mesons. The J/psi and gamma production cross-sections and the fraction of J/psi mesons from b-hadron decays are measured as a function of the meson P-T and y.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Massafferri, A.; Nasteva, I.; dos Reis, A. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: Ciulia.Manca@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321381800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1536  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the chi(b) (3 P) mass and of the relative rate of chi(b1) (1 P) and chi(b2) (1 P) production Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 088 - 22pp  
  Keywords (down) Quarkonium; Hadron-Hadron Scattering; Flavor physics  
  Abstract The production of chi(b) mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of root s = 7 and 8 TeV and corresponding to an integrated luminosity of 3.0 fb(-1). The chi(b) mesons are identified through their decays to Upsilon(1 S)gamma and Upsilon(2 S)gamma using photons that converted to e(+)e (-) pairs in the detector. The relative prompt production rate of chi(b1)(1 P) and chi(b2)(1 P) mesons is measured as a function of the Upsilon(1 S) transverse momentum in the chi(b) rapidity range 2.0 < y < 4.5. A precise measurement of the chi(b) (3 P) mass is also performed. Assuming a mass splitting between the chi(b1)(3 P) and the chi(b2)(3 P) states of 10.5 MeV/c(2), the measured mass of the chi(b1)(3 P) meson is m (chi(b1)(3 P)) = 10515.7(-3.9)(+2.2)(stat)(-2.1)(+1.5)(syst) MeV/c(2).  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Hicheur, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: tournefier@lapp.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343976700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1982  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of Upsilon production in pp collisions at root s=13 TeV Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 134 - 27pp  
  Keywords (down) Quarkonium; Hadron-Hadron scattering (experiments); QCD  
  Abstract The production cross-sections of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at root s = 13 TeV are measured with a data sample corresponding to an integrated luminosity of 277 +/- 11 pb(-1) recorded by the LHCb experiment in 2015. The Upsilon mesons are reconstructed in the decay mode Upsilon -> mu(+)mu(-). The differential production cross-sections times the dimuon branching fractions are measured as a function of the Upsilon transverse momentum, p(T) , and rapidity, y, over the range 0 < p(T) < 30 GeV/c and 2.0 < y < 4.5. The ratios of the cross-sections with respect to the LHCb measurement at root s = 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.  
  Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Soares Lavra, I; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439525900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3667  
Permanent link to this record
 

 
Author Vento, V. doi  openurl
  Title Skyrmions at high density Type Journal Article
  Year 2017 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E  
  Volume 26 Issue 1-2 Pages 1740029 - 15pp  
  Keywords (down) Quark; pion; Skyrmion; dilation  
  Abstract The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark-gluon plasma. We justify the origin of the quarkyonic phase transition in a chiral-quark model and describe its formulation in terms of Skyrme crystals.  
  Address [Vento, Vicente] Univ Valencia CSIC, Dept Fis Teor, C Dr Moliner,50, E-46100 Valencia, Spain, Email: vicente.vento@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-3013 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000395110800033 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2994  
Permanent link to this record
 

 
Author Vento, V. doi  openurl
  Title Skyrmions at high density Type Journal Article
  Year 2018 Publication Physics of Particles and Nuclei Letters Abbreviated Journal Phys. Part. Nuclei Lett.  
  Volume 15 Issue 4 Pages 367-370  
  Keywords (down) quark; pion; skyrmion; dilation  
  Abstract The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark gluon plasma. We describe its formulation in terms of Skyrme crystals and justify the origin of the quarkyonic phase transition in a chiral-quark model.  
  Address [Vento, V.] Univ Valencia, CSIC, Dept Fis Teor IFIC, E-46100 Burjassot, Valencia, Spain, Email: vicente.vento@uv.es  
  Corporate Author Thesis  
  Publisher Pleiades Publishing Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1547-4771 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000437770100006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3651  
Permanent link to this record
 

 
Author Gonzalez, P. url  doi
openurl 
  Title Generalized screened potential model Type Journal Article
  Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 41 Issue 9 Pages 095001 - 12pp  
  Keywords (down) quark; meson; potential  
  Abstract A new non relativistic quark model to calculate the spectrum of heavy quark mesons is developed. The model is based on an interquark potential interaction that implicitly incorporates screening effects from meson-meson configurations. An analysis of the bottomonium spectrum shows the appearance of extra states as compared to conventional non screened potential models.  
  Address Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: pedro.gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342356400014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1955  
Permanent link to this record
 

 
Author Gonzalez, P. url  doi
openurl 
  Title A quark model study of strong decays of X(3915) Type Journal Article
  Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 44 Issue 7 Pages 075004 - 13pp  
  Keywords (down) quark; meson; potential  
  Abstract Strong decays of X(3915) are analyzed from two quark model descriptions of X(3915), a conventional one in terms of the Cornell potential and an unconventional one from a generalized screened potential. We conclude that the experimental suppression of the OZI allowed decay X(3915) -> D (D) over bar might be explained in both cases due to the momentum dependence of the decay amplitude. However, the experimental significance of the OZI forbidden decay X(3915) -> omega J/psi could favor an unconventional description.  
  Address [Gonzalez, P.] Univ Valencia, Dept Fis Teor, CSIC, IFIC, E-46100 Valencia, Spain, Email: pedro.gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402890800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3158  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva