toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title Fermionic UV models for neutral triple gauge boson vertices Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 275 - 28pp  
  Keywords (up) Effective Field Theories; SMEFT; Specific BSM Phenomenology; Vector-Like Fermions  
  Abstract Searches for anomalous neutral triple gauge boson couplings (NTGCs) provide important tests for the gauge structure of the standard model. In SMEFT (“standard model effective field theory”) NTGCs appear only at the level of dimension-8 operators. While the phenomenology of these operators has been discussed extensively in the literature, renormalizable UV models that can generate these operators are scarce. In this work, we study a variety of extensions of the SM with heavy fermions and calculate their matching to d = 8 NTGC operators. We point out that the complete matching of UV models requires four different CP-conserving d = 8 operators and that the single CPC d = 8 operator, most commonly used by the experimental collaborations, does not describe all possible NTGC form factors. Despite stringent experimental constraints on NTGCs, limits on the scale of UV models are relatively weak, because their contributions are doubly suppressed (being d = 8 and 1-loop). We suggest a series of benchmark UV scenarios suitable for interpreting searches for NTGCs in the upcoming LHC runs, obtain their current limits and provide estimates for the expected sensitivity of the high-luminosity LHC.  
  Address [Cepedello, Ricardo] Univ Granada, Dept Fis Teor & Cosmos, Campus Fuentenueva, E-18071 Granada, Spain, Email: ricepe@ugr.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001282227200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6222  
Permanent link to this record
 

 
Author Bagnaschi, E.; Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T. url  doi
openurl 
  Title SMEFT analysis of m(W) Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 308 - 22pp  
  Keywords (up) Electroweak Precision Physics; SMEFT  
  Abstract We use the Fitmaker tool to incorporate the recent CDF measurement of mW in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O-HWB, O-HD, O (l) (l) or O ((3)) (H l) with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O-HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z 0 vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.  
  Address [Bagnaschi, Emanuele; Ellis, John; You, Tevong] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: emanuele.bagnaschi@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000848742400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5349  
Permanent link to this record
 

 
Author Conde, D.; Castillo, F.L.; Escobar, C.; García, C.; Garcia Navarro, J.E.; Sanz, V.; Zaldívar, B.; Curto, J.J.; Marsal, S.; Torta, J.M. doi  openurl
  Title Forecasting Geomagnetic Storm Disturbances and Their Uncertainties Using Deep Learning Type Journal Article
  Year 2023 Publication Space Weather Abbreviated Journal Space Weather  
  Volume 21 Issue 11 Pages e2023SW003474 - 27pp  
  Keywords (up) geomagnetic storms; deep learning; forecasting; SYM-H; uncertainties; hyper-parameter optimization  
  Abstract Severe space weather produced by disturbed conditions on the Sun results in harmful effects both for humans in space and in high-latitude flights, and for technological systems such as spacecraft or communications. Also, geomagnetically induced currents (GICs) flowing on long ground-based conductors, such as power networks, potentially threaten critical infrastructures on Earth. The first step in developing an alarm system against GICs is to forecast them. This is a challenging task given the highly non-linear dependencies of the response of the magnetosphere to these perturbations. In the last few years, modern machine-learning models have shown to be very good at predicting magnetic activity indices. However, such complex models are on the one hand difficult to tune, and on the other hand they are known to bring along potentially large prediction uncertainties which are generally difficult to estimate. In this work we aim at predicting the SYM-H index characterizing geomagnetic storms multiple-hour ahead, using public interplanetary magnetic field (IMF) data from the Sun-Earth L1 Lagrange point and SYM-H data. We implement a type of machine-learning model called long short-term memory (LSTM) network. Our scope is to estimate the prediction uncertainties coming from a deep-learning model in the context of forecasting the SYM-H index. These uncertainties will be essential to set reliable alarm thresholds. The resulting uncertainties turn out to be sizable at the critical stages of the geomagnetic storms. Our methodology includes as well an efficient optimization of important hyper-parameters of the LSTM network and robustness tests.  
  Address [Conde, D.; Escobar, C.; Garcia, C.; Garcia, J. E.; Sanz, V.; Zaldivar, B.] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Daniel.Conde@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Geophysical Union Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001104189700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5804  
Permanent link to this record
 

 
Author Folgado, M.G.; Sanz, V. url  doi
openurl 
  Title Exploring the political pulse of a country using data science tools Type Journal Article
  Year 2022 Publication Journal of Computational Social Science Abbreviated Journal J. Comput. Soc. Sci.  
  Volume 5 Issue Pages 987-1000  
  Keywords (up) Politics; Spain; Sentiment analysis; Artificial Intelligence; Machine learning; Neural networks; Natural Language Processing (NLP)  
  Abstract In this paper we illustrate the use of Data Science techniques to analyse complex human communication. In particular, we consider tweets from leaders of political parties as a dynamical proxy to political programmes and ideas. We also study the temporal evolution of their contents as a reaction to specific events. We analyse levels of positive and negative sentiment in the tweets using new tools adapted to social media. We also train a Fully-Connected Neural Network (FCNN) to recognise the political affiliation of a tweet. The FCNN is able to predict the origin of the tweet with a precision in the range of 71-75%, and the political leaning (left or right) with a precision of around 90%. This study is meant to be viewed as an example of how to use Twitter data and different types of Data Science tools for a political analysis.  
  Address [Folgado, Miguel G.; Sanz, Veronica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia 46980, Spain, Email: migarfol@upvnet.upv.es;  
  Corporate Author Thesis  
  Publisher Springernature Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2432-2717 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000742263500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5077  
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 081 - 47pp  
  Keywords (up) SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology  
  Abstract We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067194100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5688  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva