toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marzocca, D.; Petcov, S.T.; Romanino, A.; Sevilla, M.C. url  doi
openurl 
  Title Nonzero |U_e3| from charged lepton corrections and the atmospheric neutrino mixing angle Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 073 - 27pp  
  Keywords (down) Neutrino Physics; CP violation  
  Abstract After the successful determination of the reactor neutrino mixing angle theta(13) not equal 0.16 not equal 0, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle theta(23) from pi/4. Using the fact that the neutrino mixing matrix U = (UeU nu)-U-dagger, where U-e and U-nu result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U-nu has a i) bimaximal (BM), H) tri-bimaximal (TBM) form, or else Hi) corresponds to the conservation of the lepton charge L' = L-e – L μ- L-tau (LC), we investigate quantitatively what are the minimal forms of U-e, in terms of angles and phases it contains, that can provide the requisite corrections to U-nu so that theta(13), theta(23) and the solar neutrino mixing angle theta(12) have values compatible with the current data. Two possible orderings of the 12 and the 23 rotations in U-e, “standard” and “inverse”, are considered. The results we obtain depend strongly on the type of ordering. In the case of “standard” ordering, in particular, the Dirac CP violation phase delta, present in U, is predicted to have a value in a narrow interval around i) delta similar or equal to pi in the BM (or LC) case, H) delta congruent to 3 pi/2 or pi/2 in the TBM case, the CP conserving values delta = 0, pi, 2 pi being excluded in the TBM case at more than 4 sigma.  
  Address [Marzocca, David; Petcov, S. T.; Romanino, Andrea] SISSA ISAS, I-34136 Trieste, Italy, Email: dmarzocc@sissa.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321374400073 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1556  
Permanent link to this record
 

 
Author Blennow, M.; Coloma, P.; Donini, A.; Fernandez-Martinez, E. url  doi
openurl 
  Title Gain fractions of future neutrino oscillation facilities over T2K and NOvA Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 159 - 23pp  
  Keywords (down) Neutrino Physics; CP violation  
  Abstract We evaluate the probability of future neutrino oscillation facilities to discover leptonic CP violation and/or measure the neutrino mass hierarchy. We study how this probability is affected by positive or negative hints for these observables to be found at T2K and NO nu A. We consider the following facilities: LBNE; T2HK; and the 10 GeV Neutrino Factory (NF10), and show how their discovery probabilities change with the running time of T2K and NO nu A conditioned to their results. We find that, if after 15 years T2K and NO nu A have not observed a 90% CL hint of CP violation, then LBNE and T2HK have less than a 10% chance of achieving a 5 sigma discovery, whereas NF10 still has a similar to 40% chance to do so. Conversely, if T2K and NO nu A have an early 90% CL hint in 5 years from now, T2HK has a rather large chance to achieve a 5 sigma CP violation discovery (75% or 55%, depending on whether the mass hierarchy is known or not). This is to be compared with the 90% (30%) probability that NF10 (LBNE) would have to observe the same signal at 5 sigma. A hierarchy measurement at 5 sigma is achievable at both LBNE and NF10 with more than 90% probability, irrespectively of the outcome of T2K and NO nu A. We also find that if LBNE or a similar very long baseline super-beam is the only next generation facility to be built, then it is very useful to continue running T2K and NO nu A (or at least T2K) beyond their original schedule in order to increase the CP violation discovery chances, given their complementarity.  
  Address [Blennow, M.] AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Engn Sci, Dept Theoret Phys, S-10691 Stockholm, Sweden, Email: emb@kth.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000323202900072 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1571  
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Neutrino predictions from generalized CP symmetries of charged leptons Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 077 - 26pp  
  Keywords (down) Neutrino Physics; CP violation  
  Abstract We study the implications of generalized CP transformations acting on the mass matrices of charged leptons in a model-independent way. Generalized e – mu, e – tau and μ- tau symmetries are considered in detail. In all cases the physical parameters of the lepton mixing matrix, three mixing angles and three CP phases can be expressed in terms of a restricted set of independent “theory parameters” that characterize a given choice of CP transformation. This leads to implications for neutrino oscillations as well as neutrinoless double beta decay experiments.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000438620700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3659  
Permanent link to this record
 

 
Author Barreiros, D.M.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Minimal scoto-seesaw mechanism with spontaneous CP violation Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 249 - 21pp  
  Keywords (down) Neutrino Physics; CP violation  
  Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.  
  Address [Barreiros, D. M.; Joaquim, F. R.] Univ Lisbon, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: debora.barreiros@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646917200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4814  
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Stimulated transitions in resonant atom Majorana mixing Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 017 - 16pp  
  Keywords (down) Neutrino Physics; Beyond Standard Model; Global Symmetries  
  Abstract Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual Delta L = 2 mixing between a parent (A)Z atom and a daughter (A)(Z – 2) excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino channel. We reconstruct the natural time history of a nominally stable parent atom since its production either by nature or in the laboratory. After the time periods of atom oscillations and the decay of the short-lived daughter atom, at observable times the relevant 'stationary" states are the mixed metastable long-lived state and the non-orthogonal short-lived excited state, as well as the ground state of the daughter atom. We find that they have a natural population inversion which is most appropriate for exploiting the bosonic nature of the observed atomic transitions radiation. Among different observables of the atom Majorana mixing, we include the enhanced rate of stimulated X-ray emission from the long-lived metastable state by a high-intensity X-ray beam: a gain factor of 100 can be envisaged at current XFEL facilities. On the other hand, the historical population of the daughter atom ground state can be probed by exciting it with a current pulsed optical laser, showing the characteristic absorption lines: the whole population can be excited in a shorter time than typical pulse duration.  
  Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424101600008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3475  
Permanent link to this record
 

 
Author Donini, A.; Gomez-Cadenas, J.J.; Meloni, D. url  doi
openurl 
  Title The tau-contamination of the golden muon sample at the Neutrino Factory Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 095 - 16pp  
  Keywords (down) Neutrino Physics; Beyond Standard Model; CP violation  
  Abstract We study the contribution of nu(e) -> nu(tau) -> tau -> μtransitions to the wrong-sign muon sample of the golden channel of the Neutrino Factory. Muons from tau decays are not really a background, since they contain information from the oscillation signal, and represent a small fraction of the sample. However, if not properly handled they introduce serious systematic error, in particular if the detector/analysis are sensitive to muons of low energy. This systematic effect is particularly troublesome for large theta(13) >= 1 degrees and prevents the use of the Neutrino Factory as a precision facility for large theta(13). Such a systematic error disappears if the tau contribution to the golden muon sample is taken into account. The fact that the fluxes of the Neutrino Factory are exactly calculable permits the knowledge of the tau sample due to the nu(e) -> nu(tau) oscillation. We then compute the contribution to the muon sample arising from this sample in terms of the apparent muon energy. This requires the computation of a migration matrix M-ij which describes the contributions of the tau neutrinos of a given energy E-i, to the muon neutrinos of an apparent energy E-j. We demonstrate that applying M-ij to the data permits the full correction of the otherwise intolerable systematic error.  
  Address [Donini, A.] Univ Autonoma Madrid, CSIC, IFT, E-28049 Madrid, Spain, Email: andrea.donini@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287939200023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 621  
Permanent link to this record
 

 
Author Chakraborty, K.; Goswami, S.; Gupta, C.; Thakore, T. url  doi
openurl 
  Title Enhancing the hierarchy and octant sensitivity of ESS nu SB in conjunction with T2K, NO nu A and ICAL@INO Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 137 - 26pp  
  Keywords (down) Neutrino Physics; Beyond Standard Model; CP violation  
  Abstract The main aim of the ESSSB proposal is the discovery of the leptonic CP phase (CP) with a high significance (5 sigma for 50% values of (CP)) by utilizing the physics at the second oscillation maxima of the P-e channel. It can achieve 3 sigma sensitivity to hierarchy for all values of (CP). In this work, we concentrate on the hierarchy and octant sensitivity of the ESSSB experiment. We show that combining the ESSSB experiment with the atmospheric neutrino data from the proposed India-based Neutrino Observatory (INO) experiment can result in an increased sensitivity to mass hierarchy. In addition, we also combine the results from the ongoing experiments T2K and NOa assuming their full run-time and present the combined sensitivity of ESSSB + ICAL@INO + T2K + NOA. We show that while by itself ESSSB can have up to 3 sigma hierarchy sensitivity, the combination of all the experiments can give up to 5 sigma sensitivity depending on the true hierarchy-octant combination. The octant sensitivity of ESSSB is low by itself. However the combined sensitivity of all the above experiments can give up to 3 sigma sensitivity depending on the choice of true hierarchy and octant. We discuss the various degeneracies and the synergies that lead to the enhanced sensitivity when combining different experimental data.  
  Address [Chakraborty, Kaustav; Goswami, Srubabati; Gupta, Chandan] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India, Email: kaustav@prl.res.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468950200011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4032  
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P. url  doi
openurl 
  Title Minimal flavor violation in the see-saw portal Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 185 - 28pp  
  Keywords (down) Neutrino Physics; Beyond Standard Model; CP violation  
  Abstract We consider an extension of the Standard Model with two singlet leptons, with masses in the electroweak range, that induce neutrino masses via the see-saw mechanism, plus a generic new physics sector at a higher scale, A. We apply the minimal flavor violation (MFV) principle to the corresponding Effective Field Theory (nu SMEFT) valid at energy scales E << A. We identify the irreducible sources of lepton flavor and lepton number violation at the renormalizable level, and apply the MFV ansatz to derive the scaling of the Wilson coefficients of the nu SMEFT operators up to dimension six. We highlight the most important phenomenological consequences of this hypothesis in the rates for exotic Higgs decays, the decay length of the heavy neutrinos, and their production modes at present and future colliders. We also comment on possible astrophysical implications.  
  Address [Barducci, Daniele] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000546965800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4462  
Permanent link to this record
 

 
Author Leitner, R.; Malinsky, M.; Roskovec, B.; Zhang, H. url  doi
openurl 
  Title Non-standard antineutrino interactions at Daya Bay Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 001 - 26pp  
  Keywords (down) Neutrino Physics; Beyond Standard Model  
  Abstract We study the prospects of pinning down the effects of non-standard antineutrino interactions in the source and in the detector at the Daya Bay neutrino facility. It is well known that if the non-standard interactions in the detection process are of the same type as those in the production, their net effect can be subsumed into a mere shift in the measured value of the leptonic mixing angle theta(13). Relaxing this assumption, the ratio of the antineutrino spectra measured by the Daya Bay far and near detectors is distorted in a characteristic way, and good fits based on the standard oscillation hypothesis are no longer viable. We show that, under certain conditions, three years of Daya Bay running can be sufficient to provide a clear hint of non-standard neutrino physics.  
  Address [Leitner, Rupert; Roskovec, Bedrich] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague 8, Czech Republic, Email: Rupert.Leitner@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298847200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 922  
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T. url  doi
openurl 
  Title The minimal 3+2 neutrino model versus oscillation anomalies Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 161 - 20pp  
  Keywords (down) Neutrino Physics; Beyond Standard Model  
  Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard 3 nu model and similarly to the 3 + 2 phenomenological models, even though the number of free parameters is much smaller than in the latter. Accounting for the anomalies in the minimal model favours a normal hierarchy of the light states and requires a large reactor angle, in agreement with recent measurements. Our analysis of the model employs a new parametrization of seesaw models that extends the Casas-Ibarra one to regimes where higher order corrections in the light-heavy mixings are significant.  
  Address [Donini, A.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: andrea.donini@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307299800039 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1161  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva