Ikeno, N., Toledo, G., & Oset, E. (2023). Model independent analysis of femtoscopic correlation functions: An application to the D∗s0(2317). Phys. Lett. B, 847, 138281–6pp.
Abstract: We face the inverse problem of obtaining the interaction between coupled channels from the correlation functions of these channels. We apply the method to the interaction of the (DK+)-K-0, (D+K0), and D-s(+)eta channels, from where the D-s0(& lowast;)(2317) state emerges. We use synthetic data extracted from an interaction model based on the local hidden gauge approach and find that the inverse problem can determine the existence of a bound state of the system with a precision of about 20 MeV. At the same time, we can determine the isospin nature of the bound state and its compositeness in terms of the channels. Furthermore, we evaluate the scattering length and effective range of all three channels, as well as the couplings of the bound state found to all the components. Lastly, the size parameter of the source function, R, which in principle should be a magnitude provided by the experimental teams, can be obtained from a fit to the data with relatively high accuracy. These findings show the value of the correlation function to learn about the meson-meson interaction for systems which are difficult to access in other present facilities.
|
Ikeno, N., Liang, W. H., & Oset, E. (2024). Molecular nature of the Ωc(3120) and its analogy with the Ω(2012). Phys. Rev. D, 109(5), 054023–7pp.
Abstract: We make a study of the omega c(3120) , one of the five omega c states observed by the LHCb Collaboration, which is well reproduced as a molecular state from the Xi*cK over bar and omega*c17 channels mostly. The state with JP = 3/2- decays to Xi cK over bar in the D wave, and we include this decay channel in our approach, as well as the effect of the Xi*c width. With all these ingredients, we determine the fraction of the omega c(3120) width that goes into Xi cK over bar K , which could be a measure of the Xi*cK over bar molecular component, but due to a relatively big binding, compared to its analogous omega(2012) state, we find only a small fraction of about 3%, which makes this measurement difficult with present statistics. As an alternative, we evaluate the scattering length and effective range of the Xi*c K over bar and omega*c17 channels, which, together with the binding and width of the omega c(3120) state, could give us an answer to the issue of the compositeness of this state when these magnitudes are determined experimentally, something feasible nowadays, for instance, measuring correlation functions.
|
Ikeno, N., Dias, J. M., Liang, W. H., & Oset, E. (2024). D+ → Ks0 π+ η reaction and a0(980)+. Eur. Phys. J. C, 84(5), 469–9pp.
Abstract: We study the D+ -> K- 0 pi (+) eta reaction where the a(0)(980) excitation plays a dominant role. We consider mechanisms of external and internal emission at the quark level, hadronize the qq components into two mesons and allow these mesons to undergo final state interaction where the a(0)(980) state is generated. While the a(0)(980) production is the dominant term, we also find other terms in the reaction that interfere with this production mode and, through interference with it, lead to a shape of the a(0)(980) significantly different from the one observed in other experiments, with an apparently much larger width.
|
Montesinos, V., Ikeno, N., Oset, E., Albaladejo, M., Nieves, J., & Tolos, L. (2025). On the determination of the D meson width in the nuclear medium with the transparency ratio. Phys. Lett. B, 860, 139172–6pp.
Abstract: We have studied the feasibility of the experimental determination of the width of a D meson in a nuclear medium by using the method of the nuclear transparency. The cross section for inclusive production of a D+ in different nuclei is evaluated, taking care of the D+ absorption in the nucleus, or equivalently, the survival probability of the D+ in its way out of the nucleus from the point of production. We use present values of the in medium width of D mesons and calculate ratios of the cross sections for different nuclei to the 12 C nucleus as reference. We find ratios of the order of 0.6 for heavy nuclei, a large deviation from unity, which indicates that the method proposed is adequate to measure this relevant magnitude, so far only known theoretically.
|
Molina, R., Ikeno, N., & Oset, E. (2023). Sequential single pion production explaining the dibaryon “d*(2380)” peak. Chin. Phys. C, 47(4), 041001–10pp.
Abstract: In this study, we investigate the two step sequential one pion production mechanism, that is, np(I=0)->pi(-)pp followed by the fusion reaction pp ->pi(+)d, to describe the np ->pi(+)pi(-)d reaction with in state I = 0 . In this reaction, a narrow peak identified with a “ d(2380) ” dibaryon has been previously observed. We discover that the second reaction step pp ->pi(+)d is driven by a triangle singularity that determines the position of the peak of the reaction and the high strength of the cross section. The combined cross section of these two mechanisms produces a narrow peak with a position, width, and strength, that are compatible with experimental observations within the applied approximations made. This novel interpretation of the peak accomplished without invoking a dibaryon explains why this peak has remained undetected in other reactions.
|