|   | 
Details
   web
Records
Author Marzocca, D.; Petcov, S.T.; Romanino, A.; Sevilla, M.C.
Title Nonzero |U_e3| from charged lepton corrections and the atmospheric neutrino mixing angle Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 073 - 27pp
Keywords (down) Neutrino Physics; CP violation
Abstract After the successful determination of the reactor neutrino mixing angle theta(13) not equal 0.16 not equal 0, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle theta(23) from pi/4. Using the fact that the neutrino mixing matrix U = (UeU nu)-U-dagger, where U-e and U-nu result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U-nu has a i) bimaximal (BM), H) tri-bimaximal (TBM) form, or else Hi) corresponds to the conservation of the lepton charge L' = L-e – L μ- L-tau (LC), we investigate quantitatively what are the minimal forms of U-e, in terms of angles and phases it contains, that can provide the requisite corrections to U-nu so that theta(13), theta(23) and the solar neutrino mixing angle theta(12) have values compatible with the current data. Two possible orderings of the 12 and the 23 rotations in U-e, “standard” and “inverse”, are considered. The results we obtain depend strongly on the type of ordering. In the case of “standard” ordering, in particular, the Dirac CP violation phase delta, present in U, is predicted to have a value in a narrow interval around i) delta similar or equal to pi in the BM (or LC) case, H) delta congruent to 3 pi/2 or pi/2 in the TBM case, the CP conserving values delta = 0, pi, 2 pi being excluded in the TBM case at more than 4 sigma.
Address [Marzocca, David; Petcov, S. T.; Romanino, Andrea] SISSA ISAS, I-34136 Trieste, Italy, Email: dmarzocc@sissa.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000321374400073 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1556
Permanent link to this record
 

 
Author Blennow, M.; Coloma, P.; Donini, A.; Fernandez-Martinez, E.
Title Gain fractions of future neutrino oscillation facilities over T2K and NOvA Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 159 - 23pp
Keywords (down) Neutrino Physics; CP violation
Abstract We evaluate the probability of future neutrino oscillation facilities to discover leptonic CP violation and/or measure the neutrino mass hierarchy. We study how this probability is affected by positive or negative hints for these observables to be found at T2K and NO nu A. We consider the following facilities: LBNE; T2HK; and the 10 GeV Neutrino Factory (NF10), and show how their discovery probabilities change with the running time of T2K and NO nu A conditioned to their results. We find that, if after 15 years T2K and NO nu A have not observed a 90% CL hint of CP violation, then LBNE and T2HK have less than a 10% chance of achieving a 5 sigma discovery, whereas NF10 still has a similar to 40% chance to do so. Conversely, if T2K and NO nu A have an early 90% CL hint in 5 years from now, T2HK has a rather large chance to achieve a 5 sigma CP violation discovery (75% or 55%, depending on whether the mass hierarchy is known or not). This is to be compared with the 90% (30%) probability that NF10 (LBNE) would have to observe the same signal at 5 sigma. A hierarchy measurement at 5 sigma is achievable at both LBNE and NF10 with more than 90% probability, irrespectively of the outcome of T2K and NO nu A. We also find that if LBNE or a similar very long baseline super-beam is the only next generation facility to be built, then it is very useful to continue running T2K and NO nu A (or at least T2K) beyond their original schedule in order to increase the CP violation discovery chances, given their complementarity.
Address [Blennow, M.] AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Engn Sci, Dept Theoret Phys, S-10691 Stockholm, Sweden, Email: emb@kth.se;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202900072 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1571
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F.
Title Neutrino predictions from generalized CP symmetries of charged leptons Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 077 - 26pp
Keywords (down) Neutrino Physics; CP violation
Abstract We study the implications of generalized CP transformations acting on the mass matrices of charged leptons in a model-independent way. Generalized e – mu, e – tau and μ- tau symmetries are considered in detail. In all cases the physical parameters of the lepton mixing matrix, three mixing angles and three CP phases can be expressed in terms of a restricted set of independent “theory parameters” that characterize a given choice of CP transformation. This leads to implications for neutrino oscillations as well as neutrinoless double beta decay experiments.
Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000438620700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3659
Permanent link to this record
 

 
Author Barreiros, D.M.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F.
Title Minimal scoto-seesaw mechanism with spontaneous CP violation Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 249 - 21pp
Keywords (down) Neutrino Physics; CP violation
Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.
Address [Barreiros, D. M.; Joaquim, F. R.] Univ Lisbon, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: debora.barreiros@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000646917200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4814
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A.
Title Stimulated transitions in resonant atom Majorana mixing Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 017 - 16pp
Keywords (down) Neutrino Physics; Beyond Standard Model; Global Symmetries
Abstract Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual Delta L = 2 mixing between a parent (A)Z atom and a daughter (A)(Z – 2) excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino channel. We reconstruct the natural time history of a nominally stable parent atom since its production either by nature or in the laboratory. After the time periods of atom oscillations and the decay of the short-lived daughter atom, at observable times the relevant 'stationary" states are the mixed metastable long-lived state and the non-orthogonal short-lived excited state, as well as the ground state of the daughter atom. We find that they have a natural population inversion which is most appropriate for exploiting the bosonic nature of the observed atomic transitions radiation. Among different observables of the atom Majorana mixing, we include the enhanced rate of stimulated X-ray emission from the long-lived metastable state by a high-intensity X-ray beam: a gain factor of 100 can be envisaged at current XFEL facilities. On the other hand, the historical population of the daughter atom ground state can be probed by exciting it with a current pulsed optical laser, showing the characteristic absorption lines: the whole population can be excited in a shorter time than typical pulse duration.
Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000424101600008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3475
Permanent link to this record