|   | 
Details
   web
Records
Author Albandea, D.; Hernandez, P.; Ramos, A.; Romero-Lopez, F.
Title Topological sampling through windings Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 10 Pages 873 - 12pp
Keywords (down)
Abstract We propose a modification of the Hybrid Monte Carlo (HMC) algorithm that overcomes the topological freezing of a two-dimensional U(1) gauge theory with and without fermion content. This algorithm includes reversible jumps between topological sectors – winding steps – combined with standard HMC steps. The full algorithm is referred to as winding HMC (wHMC), and it shows an improved behaviour of the autocorrelation time towards the continuum limit. We find excellent agreement between the wHMC estimates of the plaquette and topological susceptibility and the analytical predictions in the U(1) pure gauge theory, which are known even at finite beta. We also study the expectation values in fixed topological sectors using both HMC and wHMC, with and without fermions. Even when topology is frozen in HMC – leading to significant deviations in topological as well as non-topological quantities – the two algorithms agree on the fixed-topology averages. Finally, we briefly compare the wHMC algorithm results to those obtained with master-field simulations of size L similar to 8 x 10(3).
Address [Albandea, David; Hernandez, Pilar; Ramos, Alberto; Romero-Lopez, Fernando] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: David.Albandea@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000703880600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4979
Permanent link to this record
 

 
Author Garofalo, M.; Romero-Lopez, F.; Rusetsky, A.; Urbach, C.
Title Testing a new method for scattering in finite volume in the phi(4) theory Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 11 Pages 1034 - 5pp
Keywords (down)
Abstract We test an alternative proposal by Bruno and Hansen (J High Energy Phys 2021(6), https://doi.org/10.1007/JHEP06(2021)043, 2021) to extract the scattering length from lattice simulations in a finite volume. For this, we use a scalar phi(4) theory with two mass nondegenerate particles and explore various strategies to implement this new method. We find that the results are comparable to those obtained from the Luscher method, with somewhat smaller statistical uncertainties at larger volumes.
Address [Garofalo, Marco; Rusetsky, Akaki; Urbach, Carsten] Rheinische Friedrich Wilhelms Univ Bonn, HISKP Theory, Nussallee 14-16, D-53115 Bonn, Germany, Email: garofalo@hiskp.uni-bonn.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000722881700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5035
Permanent link to this record
 

 
Author Drach, V.; Fritzsch, P.; Rago, A.; Romero-Lopez, F.
Title Singlet channel scattering in a composite Higgs model on the lattice Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 1 Pages 47 - 10pp
Keywords (down)
Abstract We present the first calculation of the scattering amplitude in the singlet channel beyond QCD. The calculation is performed in SU(2) gauge theory with N-f = 2 fundamental Dirac fermions and based on a finite-volume scattering formalism. The theory exhibits a SU (4) -> Sp(4) chiral symmetry breaking pattern that is used to design minimal composite Higgs models currently tested at the LHC. Our results show that, for the range of underlying fermion mass considered, the lowest flavour singlet state is stable.
Address [Drach, Vincent; Fritzsch, Patrick; Rago, Antonio] Univ Plymouth, Ctr Math Sci, Plymouth PL4 8AA, Devon, England, Email: fernando.romero@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000744537400008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5097
Permanent link to this record