|   | 
Details
   web
Records
Author NEXT Collaboration; Carcel, S.; Carrion, J.V.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 7 Pages 075001 - 17pp
Keywords (up) gaseous detectors; scintillators; scintillation and light emission processes; solid; gas and liquid scintillators
Abstract Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
Address [Rogers, L.; Jones, B. J. P.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Byrnes, N.; Dingler, R.; McDonald, A. D.; Nygren, D. R.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: leslie.rogers@mavs.uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000537753800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4423
Permanent link to this record
 

 
Author Ayala, C.; Gonzalez, P.; Vento, V.
Title Heavy quark potential from QCD-related effective coupling Type Journal Article
Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 12 Pages 125002 - 12pp
Keywords (up) general properties of QCD; potential models; other non-perturbative calculations; heavy quarkonia
Abstract We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.
Address [Gonzalez, Pedro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Pedro.Gonzalez@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000388219700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2870
Permanent link to this record
 

 
Author Rinaldi, M.; Vento, V.
Title Scalar spectrum in a graviton soft wall model Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 12 Pages 125003 - 16pp
Keywords (up) glueball; meson; spectrum; AdS; CFT
Abstract In this study we present a unified phenomenological analysis of the scalar glueball and scalar meson spectra within an AdS/QCD framework in the bottom up approach. For this purpose we generalize the recently developed graviton soft-wall (GSW) model, which has shown an excellent agreement with the lattice QCD glueball spectrum, to a description of glueballs and mesons with a unique energy scale. In this scheme, dilatonic effects, are incorporated in the metric as a deformation of the AdS space. We apply the model also to the heavy meson spectra with success. We obtain quadratic mass equations for all scalar mesons while the glueballs satisfy an almost linear mass equation. Besides their spectra, we also discuss the mixing of scalar glueball and light scalar meson states within a unified framework: the GSW model. To this aim, the light-front (LF) holographic approach, which connects the mode functions of AdS/QCD to the LF wave functions, is applied. This relation provides the probabilistic interpretation required to properly investigate the mixing conditions.
Address [Rinaldi, Matteo] Univ Perugia, INFN, Dipartimento Fis & Geol, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000584306700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4587
Permanent link to this record
 

 
Author Rinaldi, M.; Vento, V.
Title Pure glueball states in a light-front holographic approach Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 5 Pages 055104 - 12pp
Keywords (up) glueball; meson; spectrum; mixing; AdS; CFT
Abstract A phenomenological analysis of the scalar glueball and scalar meson spectra is carried out by using the AdS/QCD framework in the bottom-up approach. The resulting spectra are in good agreement for glueballs with lattice QCD results and for mesons with PDG data. We make use of the relation between the mode functions in AdS/QCD and the wave functions in Light-Front QCD to discuss the mixing of glueballs and mesons. The results of our investigation point out that above 2 GeV scalar particles will appear in almost degenerate pairs of unmixed glueball and mesons states leading to an interesting phenomenology whereby gluon dynamics could be well investigated.
Address [Rinaldi, Matteo] Univ Perugia, Dipartimento Fis & Geol, Via A Pascoli, I-06123 Perugia, Italy, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000521463800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4338
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title Fitting (NLO)-L-3 pseudo-potentials through central plus tensor Landau parameters Type Journal Article
Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 41 Issue 6 Pages 065104 - 12pp
Keywords (up) Landau parameters; (NLO)-L-3; phenomenological interactions; fitting methods
Abstract Landau parameters determined from phenomenological finite-range interactions are used to get an estimation of next-to-next-to-next-to-leading order ((NLO)-L-3) pseudo-potentials parameters. The parameter sets obtained in this way are shown to lead to consistent results concerning saturation properties. The uniqueness of this procedure is discussed, and an estimate of the error induced by the truncation at (NLO)-L-3 is given.
Address [Davesne, D.] Univ Lyon, F-69622 Lyon, France, Email: davesne@inpl.in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000338425100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1838
Permanent link to this record
 

 
Author Pastore, A.; Davesne, D.; Navarro, J.
Title Nuclear matter response function with a central plus tensor Landau interaction Type Journal Article
Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 41 Issue 5 Pages 055103 - 17pp
Keywords (up) Landau; random phase approximation; phenomenological interactions; tensor
Abstract We present a method to obtain response functions in the random phase approximation (RPA) based on a residual interaction described in terms of Landau parameters with central plus tensor contributions. The response functions keep the explicit momentum dependence of the RPA, in contrast with the traditional Landau approximation. Results for symmetric nuclear matter and pure neutron matter are presented using Landau parameters derived from finite-range interactions, both phenomenological and microscopic. We study the convergence of response functions as the number of Landau parameters is increased.
Address [Pastore, A.; Navarro, J.] Univ Libre Brussels, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: apastore@ulb.ac.be
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000334662500015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1750
Permanent link to this record
 

 
Author Botella, F.J.; Cornet-Gomez, F.; Miro, C.; Nebot, M.
Title New physics hints from τ scalar interactions and (g-2)e,μ Type Journal Article
Year 2024 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 51 Issue 2 Pages 025001 - 20pp
Keywords (up) lepton sector; extended scalar sector; new physics signals
Abstract We consider a flavour conserving two Higgs doublet model that consists of a type I (or X) quark sector and a generalized lepton sector where the Yukawa couplings of the charged leptons to the new scalars are not proportional to the lepton masses. The model, previously proposed to solve both muon and electron g – 2 anomalies simultaneously, is also capable to accommodate the ATLAS excess in pp -> S -> tau(+)tau(-) with gluon-gluon fusion production in the invariant mass range [0.2; 0.6] TeV, including all relevant low and high energy constraints. The excess is reproduced taking into account the new contributions from the scalar H, the pseudoscalar A, or both. In particular, detailed numerical analyses favoured the solution with a significant hierarchy among the vevs of the two Higgs doublets, t(beta)similar to 10, and light neutral scalars satisfying m(A) > m(H) with sizable couplings to tau leptons. In this region of the parameter space, the muon g – 2 anomaly receives one and two-loop (Barr Zee) contributions of similar size, while the electron anomaly is explained at two loops. An analogous ATLAS excess in b-associated production and the CMS excess in ditop production are also studied. Further New Physics prospects concerning the anomalous magnetic moment of the tau lepton and the implications of the CDF M-W measurement on the final results are discussed.
Address [Botella, Francisco J.; Miro, Carlos; Nebot, Miguel] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Francisco.J.Botella@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:001132956900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5877
Permanent link to this record
 

 
Author Boggia, M.; Cruz-Martinez, J.M.; Frellesvig, H.; Glover, N.; Gomez-Ambrosio, R.; Gonella, G.; Haddad, Y.; Ilnicka, A.; Jones, S.; Kassabov, Z.; Krauss, F.; Megy, T.; Melini, D.; Napoletano, D.; Passarino, G.; Patel, S.; Rodriguez-Vazquez, M.; Wolf, T.
Title The HiggsTools handbook: a beginners guide to decoding the Higgs sector Type Journal Article
Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 45 Issue 6 Pages 065004 - 152pp
Keywords (up) LHC physics; Higgs boson; new physics searches; effective field theories; Higgs momentum distributions
Abstract This report summarises some of the activities of the HiggsTools initial training network working group in the period 2015-2017. The main goal of this working group was to produce a document discussing various aspects of state-of-the-art Higgs physics at the large hadron collider (LHC) in a pedagogic manner The first part of the report is devoted to a description of phenomenological searches for new physics (NP) at the LHC. All of the available studies of the couplings of the new resonance discovered in 2012 by the ATLAS and CMS experiments (Aad et al (ATLAS Collaboration) 2012 Phys. Lett. B 716 1-29; Chatrchyan et al (CMS Collaboration) 2012 Phys. Lett. B 716 30-61) conclude that it is compatible with the Higgs boson of the standard model (SM) within present precision. So far the LHC experiments have given no direct evidence for any physical phenomena that cannot be described by the SM. As the experimental measurements become more and more precise, there is a pressing need for a consistent framework in which deviations from the SM predictions can be computed precisely. Such a framework should be applicable to measurements in all sectors of particle physics, not only LHC Higgs measurements but also electroweak precision data, etc. We critically review the use of the k-framework, fiducial and simplified template cross sections, effective field theories, pseudoobservables and phenomenological Lagrangians. Some of the concepts presented here are well known and were used already at the time of the large electron-positron collider (LEP) experiment. However, after years of theoretical and experimental development, these techniques have been refined, and we describe new tools that have been introduced in order to improve the comparison between theory and experimental data. In the second part of the report, we propose Phi(eta)* as a new and complementary observable for studying Higgs boson production at large transverse momentum in the case where the Higgs boson decays to two photons. The Phi(eta)* variable depends on measurements of the angular directions and rapidities of the two Higgs decay products rather than the energies, and exploits the information provided by the calorimeter in the detector. We show that, even without tracking information, the experimental resolution for Phi(eta)* is better than that of the transverse momentum of the photon pair, particularly at low transverse momentum. We make a detailed study of the phenomenology of the Phi(eta)* variable, contrasting the behaviour with the Higgs transverse momentum distribution using a variety of theoretical tools including event generators and fixed order perturbative computations. We consider the theoretical uncertainties associated with both p TH and Phi(eta)* distributions. Unlike the transverse momentum distribution, the Phi(eta)* distribution is well predicted using the Higgs effective field theory in which the top quark is integrated out-even at large values of Phi(eta)*-thereby making this a better observable for extracting the parameters of the Higgs interaction. In contrast, the potential of the Phi(eta)* distribution as a probe of NP is rather limited, since although the overall rate is affected by the presence of additional heavy fields, the shape of the Phi(eta)* distribution is relatively insensitive to heavy particle thresholds.
Address [Boggia, M.; Gonella, G.; Jones, S.; Megy, T.] Albert Ludwigs Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany, Email: raquel.gomez-ambrosio@durham.ac.uk
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000434094000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3604
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo Diaz-Aldagalan, D.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Olcina, I.; Real, D.; Sanchez Garcia, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Letter of intent for KM3NeT 2.0 Type Journal Article
Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 8 Pages 084001 - 130pp
Keywords (up) neutrino astronomy; neutrino physics; deep sea neutrino telescope; neutrino mass hierarchy
Abstract The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.
Address [Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C. D.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gest Integrada Zonas Costeras, C Paranimf 1, E-46730 Gandia, Spain, Email: brunner@cppm.in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000381686700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2773
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L.
Title Electron scattering and neutrino physics Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 12 Pages 120501 - 34pp
Keywords (up) neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering
Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.
Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:001086874300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5748
Permanent link to this record