|   | 
Details
   web
Records
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.
Title Tensor perturbations in a general class of Palatini theories Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 026 - 16pp
Keywords (down) modified gravity; inflation; gravity; dark energy theory
Abstract We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the spacetime metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Address [Jimenez, Jose Beltran] Univ Louvain, Inst Math & Phys, Ctr Cosmol Particle Phys & Phenomenol, B-1318 Louvain, Belgium, Email: jose.beltran@cpt.univ.mrs.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000359215400027 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2368
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Ringeval, C.
Title Cascading dust inflation in Born-lnfeld gravity Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 046 - 30pp
Keywords (down) modified gravity; inflation
Abstract In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating (lust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefiffly exits when the CR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the BornInfeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bc nee thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary ldnd, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.
Address [Jimenez, Jose Beltran] Aix Marseille Univ, Ctr Phys Theor, UMR 7332, F-13288 Marseille, France, Email: jose.beltran@cpt.univ-mrs.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365821200047 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2478
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title New scalar compact objects in Ricci-based gravity theories Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 044 - 20pp
Keywords (down) modified gravity; gravity; GR black holes; Wormholes
Abstract Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers.
Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000507261900041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4252
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Rotating black holes in Eddington-inspired Born-Infeld gravity: an exact solution Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 058 - 31pp
Keywords (down) modified gravity; GR black holes; Wormholes
Abstract We find an exact, rotating charged black hole solution within Eddington-inspired Born-Infeld gravity. To this end we employ a recently developed correspondence or mapping between modified gravity models built as scalars out of contractions of the metric with the Ricci tensor, and formulated in metric-affine spaces (Ricci-Based Gravity theories) and General Relativity. This way, starting from the Kerr-Newman solution, we show that this mapping bring us the axisymmetric solutions of Eddington-inspired Born-Infeld gravity coupled to a certain model of non-linear electrodynamics. We discuss the most relevant physical features of the solutions obtained this way, both in the spherically symmetric limit and in the fully rotating regime. Moreover, we further elaborate on the potential impact of this important technical progress for bringing closer the predictions of modified gravity with the astrophysical observations of compact objects and gravitational wave astronomy.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000609085900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4682
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Galactic rotation curves in hybrid metric-Palatini gravity Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 50-52 Issue Pages 65-75
Keywords (down) Modified gravity; Galactic rotation curves; Dark matter
Abstract Generally, the dynamics of test particles around galaxies, as well as the corresponding mass deficit, is explained by postulating the existence of a hypothetical dark matter. In fact, the behavior of the rotation curves shows the existence of a constant velocity region, near the baryonic matter distribution, followed by a quick decay at large distances. In this work, we consider the possibility that the behavior of the rotational velocities of test particles gravitating around galaxies can be explained within the framework of the recently proposed hybrid metric-Palatini gravitational theory. The latter is constructed by modifying the metric Einstein-Hilbert action with an f(R) term in the Palatini formalism. It was shown that the theory unifies local constraints and the late-time cosmic acceleration, even if the scalar field is very light. In the intermediate galactic scale, we show explicitly that in the hybrid metric-Palatini model the tangential velocity can be explicitly obtained as a function of the scalar field of the equivalent scalar-tensor description. The model predictions are compared model with a small sample of rotation curves of low surface brightness galaxies, respectively, and a good agreement between the theoretical rotation Curves and the observational data is found. The possibility of constraining the form of the scalar field and the parameters of the model by using the stellar velocity dispersions is also analyzed. Furthermore, the Doppler velocity shifts are also obtained in terms of the scalar field. All the physical and geometrical quantities and the numerical parameters in the hybrid metric-Palatini model can be expressed in terms of observable/measurable parameters, such as the tangential velocity, the baryonic mass of the galaxy, the Doppler frequency shifts, and the stellar dispersion velocity, respectively. Therefore, the obtained results open the possibility of testing the hybrid metric-Palatini gravitational models at the galactic or extra-galactic scale by using direct astronomical and astrophysical observations.
Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000329271000009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1689
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Charged BTZ-type solutions in Eddington-inspired Born-Infeld gravity Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 025 - 23pp
Keywords (down) modified gravity; Exact solutions; black holes and black hole thermodynamics in GR and beyond; Wormholes
Abstract We construct an axially symmetric solution of Eddington-inspired Born-Infeld gravity coupled to an electromagnetic field in 2 + 1 dimensions including a (negative) cosmological constant term. This is achieved by using a recently developed mapping procedure that allows to generate solutions in certain families of metric-affine gravity theories starting from a known seed solution of General Relativity, which in the present case corresponds to the electrically charged Banados-Teitelboim-Zanelli (BTZ) solution. We discuss the main features of the new configurations, including the modifications to the ergospheres and horizons, the emergence of wormhole structures, and the consequences for the regularity (or not) of these space-times via geodesic completeness.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, Plaza Ciencias S-N, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000727716400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5050
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title The virial theorem and the dark matter problem in hybrid metric-Palatini gravity Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 024 - 19pp
Keywords (down) modified gravity; dark matter theory; galaxy clusters
Abstract Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, taking into account the relativistic collisionless Boltzmann equation, we show that the supplementary geometric terms in the gravitational field equations provide an effective contribution to the gravitational potential energy. We show that the total virial mass is proportional to the effective mass associated with the new terms generated by the effective scalar field, and the baryonic mass. In addition to this, we also consider astrophysical applications of the model and show that the model predicts that the mass associated to the scalar field and its effects extend beyond the virial radius of the clusters of galaxies. In the context of the galaxy cluster velocity dispersion profiles predicted by the hybrid metric-Palatini model, the generalized virial theorem can be an efficient tool in observationally testing the viability of this class of generalized gravity models.
Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000322582000025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1531
Permanent link to this record
 

 
Author Cervantes-Cota, J.L.; de Putter, R.; Linder, E.V.
Title Induced gravity and the attractor dynamics of dark energy/dark matter Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 019 - 20pp
Keywords (down) modified gravity; dark energy theory
Abstract Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.
Address [Cervantes-Cota, Jorge L.] Inst Nacl Invest Nucl, Dept Fis, Mexico City 11801, DF, Mexico, Email: jorge.cervantes@inin.gob.mx
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000286930700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 533
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Cosmology of hybrid metric-Palatini f(X)-gravity Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 011 - 25pp
Keywords (down) modified gravity; dark energy theory
Abstract A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X equivalent to kappa T-2 + R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure.
Address Univ Naples Federico II, Dipartimento Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000318556200011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1444
Permanent link to this record
 

 
Author Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.
Title Cosmological data analysis of f(R) gravity models Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 004 - 18pp
Keywords (down) modified gravity; cosmological parameters from LSS
Abstract A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.
Address [Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Valencia 46071, Spain, Email: girones@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000284825100004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 315
Permanent link to this record