|   | 
Details
   web
Records
Author Olmo, G.J.; Rubiera-Garcia, D.
Title The quantum, the geon and the crystal Type Journal Article
Year 2015 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 24 Issue 9 Pages 1542013 - 15pp
Keywords (up) Effective geometries; crystalline structures; modified gravity; metric-affine approach; geons
Abstract Effective geometries arising from a hypothetical discrete structure of spacetime can play an important role in the understanding of the gravitational physics beyond General Relativity (GR). To discuss this question, we make use of lessons from crystalline systems within solid state physics, where the presence of defects in the discrete microstructure of the crystal determine the kind of effective geometry needed to properly describe the system in the macroscopic continuum limit. In this work, we study metric-affine theories with nonmetricity and torsion, which are the gravitational analog of crystalline structures with point defects and dislocations. We consider a crystal-motivated gravitational action and show the presence of topologically nontrivial structures (wormholes) supported by an electromagnetic field. Their existence has important implications for the quantum foam picture and the effective gravitational geometries. We discuss how the dialogue between solid state physics systems and modified gravitational theories can provide useful insights on both sides.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Fac Fis, Dept Fis Teor, E-46100 Valencia, Spain, Email: drubiera@fudan.edu.cn
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000358793200014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2322
Permanent link to this record
 

 
Author Belchior, F.M.; Moreira, A.R.P.; Maluf, R.V.; Almeida, C.A.S.
Title 5D Elko spinor field non-minimally coupled to nonmetricity in f (Q) gravity Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 843 Issue Pages 138029 - 8pp
Keywords (up) Elko field; Dark matter; Thick brane; Symmetric teleparallel gravity
Abstract This paper aims to investigate the localization of the five-dimensional spinor field known as Elko (dual-helicity eigenspinors of the charge conjugation operator) by employing a Yukawa-like geometrical coupling in which the Elko field is non-minimally coupled to nonmetricity scalar Q. We adopt the braneworld scenarios in which the first-order formalism with sine-Gordon and linear superpotentials is employed to obtain the warp factors. A linear function supports the zero-mode trapping within the geometric coupling, leading to the same effective potential as the scalar field. Moreover, an exotic term must be added to obtain real-valued massive modes. Such modes are investigated through the Schrodinger-like approach.
Address [Belchior, F. M.; Moreira, A. R. P.; Maluf, R. V.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pico,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001039072300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5594
Permanent link to this record
 

 
Author Afonso, V.I.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title An infinite class of exact rotating black hole metrics of modified gravity Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 052 - 14pp
Keywords (up) Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.
Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Academ Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000776994500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5185
Permanent link to this record
 

 
Author Alencar, G.; Estrada, M.; Muniz, C.R.; Olmo, G.J.
Title Dymnikova GUP-corrected black holes Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 100 - 23pp
Keywords (up) Exact solutions; black holes and black hole thermodynamics in GR and beyond; GR black holes; modified gravity; quantum black holes
Abstract We consider the impact of Generalized Uncertainty Principle (GUP) effects on the Dymnikova regular black hole. The minimum length scale introduced by the GUP modifies the energy density associated with the gravitational source, referred to as the Dymnikova vacuum, based on its analogy with the gravitational counterpart of the Schwinger effect. We present an approximated analytical solution (together with exact numerical results for comparison) that encompasses a wide range of black hole sizes, whose properties crucially depend on the ratio between the de Sitter core radius and the GUP scale. The emergence of a wormhole inside the de Sitter core in the innermost region of the object is one of the most relevant features of this family of solutions. Our findings demonstrate that these solutions remain singularity free, confirming the robustness of the Dymnikova regular black hole under GUP corrections. Regarding energy conditions, we find that the violation of the strong, weak, and null energy conditions which is characteristic of the pure Dymnikova case does not occur at Planckian scales in the GUP corrected solution. This contrast suggests a departure from conventional expectations and highlights the influence of quantum corrections and the GUP in modifying the energy conditions near the Planck scale.
Address [Alencar, G.; Olmo, Gonzalo J.] Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil, Email: geova@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001121623400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5868
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Nonsingular Charged Black Holes A La Palatini Type Journal Article
Year 2012 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 21 Issue 8 Pages 1250067 - 6pp
Keywords (up) Extended theories of gravity; Palatini formalism; Planck scale
Abstract We argue that the quantum nature of matter and gravity should lead to a discretization of the allowed states of the matter confined in the interior of black holes. To support and illustrate this idea, we consider a quadratic extension of general relativity (GR) formulated a la Palatini and show that nonrotating, electrically charged black holes develop a compact core at the Planck density which is nonsingular if the mass spectrum satisfies a certain discreteness condition. We also find that the area of the core is proportional to the number of charges times the Planck area.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, Fac Fis, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000308497500002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1154
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Junction conditions in Palatini f(R) gravity Type Journal Article
Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 37 Issue 21 Pages 215002 - 11pp
Keywords (up) f(R) gravity; junction conditions; Palatini approach; stellar structure
Abstract We work out the junction conditions for f(R) gravity formulated in metric-affine (Palatini) spaces using a tensor distributional approach. These conditions are needed for building consistent models of gravitating bodies with an interior and exterior regions matched at some hypersurface. Some of these conditions depart from the standard Darmois-Israel ones of general relativity and from their metric f(R) counterparts. In particular, we find that the trace of the stress-energy momentum tensor in the bulk must be continuous across the matching hypersurface, though its normal derivative need not to. We illustrate the relevance of these conditions by considering the properties of stellar surfaces in polytropic models, showing that the range of equations of state with potentially pathological effects is shifted beyond the domain of physical interest. This confirms, in particular, that neutron stars and white dwarfs can be safely modelled within the Palatini f(R) framework.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000575326000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4555
Permanent link to this record
 

 
Author Boudet, S.; Bombacigno, F.; Olmo, G.J.; Porfirio, P.
Title Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 032 - 29pp
Keywords (up) Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; Exact solutions; black holes and black hole thermodynamics in GR and beyond
Abstract We generalize the Chern-Simons modified gravity to the metric-affine case and impose projective invariance by supplementing the Pontryagin density with homothetic curvature terms which do not spoil topologicity. The latter is then broken by promoting the coupling of the Chern-Simons term to a (pseudo)-scalar field. The solutions for torsion and nonmetricity are derived perturbatively, showing that they can be iteratively obtained from the background fields. This allows us to describe the dynamics for the metric and the scalar field perturbations in a self-consistent way, and we apply the formalism to the study of quasi normal modes in a Schwarzschild black hole background. Unlike in the metric formulation of this theory, we show that the scalar field is endowed with dynamics even in the absence of its kinetic term in the action. Finally, using numerical methods we compute the quasinormal frequencies and characterize the late-time power law tails for scalar and metric perturbations, comparing the results with the outcomes of the purely metric approach.
Address [Boudet, S.] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Povo, TN, Italy, Email: simon.boudet@unitn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804493000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5238
Permanent link to this record
 

 
Author Olmo, G.J.; Orazi, E.; Pradisi, G.
Title Conformal metric-affine gravities Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 057 - 21pp
Keywords (up) Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R μnu R μnu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000878259300018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5405
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Accelerated observers and the notion of singular spacetime Type Journal Article
Year 2018 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 35 Issue 5 Pages 055010 - 18pp
Keywords (up) general relativity; geodesic behaviour; black holes; spacetime singularities; modified theories of gravity
Abstract Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.
Address [Olmo, Gonzalo J.; Sanchez-Puente, Antonio] Univ Valencia, Dept Fis Teor, CSIC, Ctr Mixto, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000424042100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3473
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title Shadows and optical appearance of black bounces illuminated by a thin accretion disk Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 036 - 19pp
Keywords (up) GR black holes; Wormholes; modified gravity; accretion
Abstract We study the light rings and shadows of an uniparametric family of spherically symmetric geometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We consider the ray-tracing method in order to study the impact parameter regions corresponding to the direct, lensed, and photon ring emissions, finding a broadening of all these regions for black bounce solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of black bounces when illuminated by three standard toy models of optically and geometrically thin accretion disks viewed in face-on orientation.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000686656000022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4943
Permanent link to this record