|   | 
Details
   web
Records
Author Dudley, R.A.; Anderson, P.R.; Balbinot, R.; Fabbri, A.
Title Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 12 Pages 124011 - 18pp
Keywords (up)
Abstract Transverse excitations in analogue black holes induce a masslike term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of approximately parallel peaks. For the most part the structure is completely different from that found in the massless case.
Address [Dudley, Richard A.; Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: dudlra13@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000452979300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3834
Permanent link to this record
 

 
Author Martone, G.I.; Larre, P.E.; Fabbri, A.; Pavloff, N.
Title Momentum distribution and coherence of a weakly interacting Bose gas after a quench Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 98 Issue 6 Pages 063617 - 21pp
Keywords (up)
Abstract We consider a weakly interacting uniform atomic Bose gas with a time-dependent nonlinear coupling constant. By developing a suitable Bogoliubov treatment we investigate the time evolution of several observables, including the momentum distribution, the degree of coherence in the system, and their dependence on dimensionality and temperature. We rigorously prove that the low-momentum Bogoliubov modes remain frozen during the whole evolution, while the high-momentum ones adiabatically follow the change in time of the interaction strength. At intermediate momenta we point out the occurrence of oscillations, which are analogous to Sakharov oscillations. We identify two wide classes of time-dependent behaviors of the coupling for which an exact solution of the problem can be found, allowing for an analytic computation of all the relevant observables. A special emphasis is put on the study of the coherence property of the system in one spatial dimension. We show that the system exhibits a smooth “light-cone effect,” with typically no prethermalization.
Address [Martone, Giovanni I.; Pavloff, Nicolas] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS,UMR 8626, F-91405 Orsay, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000452949900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3841
Permanent link to this record
 

 
Author Anderson, P.R.; Clark, R.D.; Fabbri, A.; Good, M.R.R.
Title Late time approach to Hawking radiation: Terms beyond leading order Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 6 Pages 061703 - 5pp
Keywords (up)
Abstract Black hole evaporation is studied using wave packets for the modes. These allow for approximate frequency and time resolution. The leading order late time behavior gives the well-known Hawking radiation that is independent of how the black hole formed. The focus here is on the higher order terms and the rate at which they damp at late times. Some of these terms carry information about how the black hole formed. A general argument is given which shows that the damping is significantly slower (power law) than what might be naively expected from a stationary phase approximation (exponential). This result is verified by numerical calculations in the cases of 2D and 4D black holes that form from the collapse of a null shell.
Address [Anderson, Paul R.; Clark, Raymond D.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000487736400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4151
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.; Dudley, R.A.; Anderson, P.R.
Title Particle production in the interiors of acoustic black holes Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 10 Pages 105021 - 13pp
Keywords (up)
Abstract Phonon creation inside the horizons of acoustic black holes is investigated using two simple toy models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal. This nonthermality is due to the anomalous scattering that occurs in the interior regions.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000498879600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4209
Permanent link to this record
 

 
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J.
Title Quantum-corrected rotating black holes and naked singularities in (2+1) dimensions Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 10 Pages 104023 - 39pp
Keywords (up)
Abstract We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on rotating (2 + 1)-dimensional black holes and naked singularities. In both cases we obtain the quantum-back-reacted metric analytically. In the black hole case, we explore the quantum corrections on different regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the naked singularity case, quantum effects lead to the formation of a horizon that hides the conical defect, thus turning it into a black hole. The fact that these effects occur not only for static but also for spinning geometries makes a strong case for the role of quantum mechanics as a cosmic censor in Nature.
Address [Casals, Marc] CBPF, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000509560700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4263
Permanent link to this record
 

 
Author Euve, L.P.; Robertson, S.; James, N.; Fabbri, A.; Rousseaux, G.
Title Scattering of Co-Current Surface Waves on an Analogue Black Hole Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 124 Issue 14 Pages 141101 - 6pp
Keywords (up)
Abstract We report on what is to our knowledge the first scattering experiment of surface waves on an accelerating transcritical flow, which in the analogue gravity context is described by an effective spacetime with a black-hole horizon. This spacetime has been probed by an incident co-current wave, which partially scatters into an outgoing countercurrent wave on each side of the horizon. The measured scattering amplitudes are compatible with the predictions of the hydrodynamical theory, where the kinematical description in terms of the effective metric is exact.
Address [Euve, Leo-Paul] Univ Paris Diderot, Univ PSL, Lab Phys & Mecan Milieux Heterogenes, CNRS,Sorbonne Univ,UMR 7636,ESPCI, 10 Rue Vauquelin, F-75321 Paris 05, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000524336600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4364
Permanent link to this record
 

 
Author Dudley, R.A.; Fabbri, A.; Anderson, P.R.; Balbinot, R.
Title Correlations between a Hawking particle and its partner in a 1+1D Bose-Einstein condensate analog black hole Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages 105005 - 12pp
Keywords (up)
Abstract The Fourier transform of the density-density correlation function in a Bose-Einstein condensate (BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles and their partners. It can be expressed in terms of <(out)(a) over cap (ext)(up) (out)(a) over cap (int)(up)> where (out)(a) over cap (ext)(up) is the annihilation operator for the Hawking particle and (out)(a) over cap (int)(up) is the corresponding one for the partner. This basic quantity is calculated for three different models for the BEC flow. It is shown that in each model the inclusion of the effective potential in the mode equations makes a significant difference. Furthermore, particle production induced by this effective potential in the interior of the black hole is studied for each model and shown to be nonthermal. An interesting peak that is related to the particle production and is present in some models is discussed.
Address [Dudley, Richard A.; Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: dudlra13@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000584963300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4590
Permanent link to this record
 

 
Author Anderson, P.R.; Siahmazgi, S.G.; Clark, R.D.; Fabbri, A.
Title Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 12 Pages 125035 - 26pp
Keywords (up)
Abstract A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case where the results are known.
Address [Anderson, Paul R.; Siahmazgi, Shohreh Gholizadeh; Clark, Raymond D.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language Spanish Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000604246500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4673
Permanent link to this record
 

 
Author Fabbri, A.; Balbinot, R.
Title Ramp-up of Hawking Radiation in Bose-Einstein-Condensate Analog Black Holes Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 126 Issue 11 Pages 111301 - 6pp
Keywords (up)
Abstract Inspired by a recent experiment by Steinhauer and co-workers, we present a simple model which describes the formation of an acoustic black hole in a Bose-Einstein condensate, allowing an analytical computation of the evolution in time of the corresponding density-density correlator. We show the emergence of analog Hawking radiation out of a “quantum atmosphere” region significantly displaced from the horizon. This is quantitatively studied both at T = 0 and even in the presence of an initial temperature T, as is always the case experimentally.
Address [Fabbri, Alessandro] Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, Burjassot 46100, Spain, Email: afabbri@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000652825400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4842
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title Quantum correlations across the horizon in acoustic and gravitational black holes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 4 Pages 045010 - 20pp
Keywords (up)
Abstract We investigate, within the framework of quantum field theory in curved space, the correlations across the horizon of a black hole in order to highlight the particle-partner pair creation mechanism at the origin of Hawking radiation. The analysis concerns both acoustic black holes, formed by Bose-Einstein condensates, and gravitational black holes. More precisely, we have considered a typical acoustic black hole metric with two asymptotic homogeneous regions and the Schwarzschild metric as describing a gravitational black hole. By considering equal-time correlation functions, we find a striking disagreement between the two cases: the expected characteristic peak centered along the trajectories of the Hawking particles and their partners seems to appear only for the acoustic black hole and not for the gravitational Schwarzschild one. The reason for that is the existence of a quantum atmosphere displaced from the horizon as the locus of origin of Hawking radiation together, and this is the crucial aspect, with the presence of a central singularity in the gravitational case swallowing everything is trapped inside the horizon. Correlations, however, are not absent in the gravitational case; to see them, one simply has to consider correlation functions at unequal times, which indeed display the expected peak.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Bologna, Italy, Email: balbinot@bo.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000761172600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5156
Permanent link to this record