|   | 
Details
   web
Records
Author Khosa, C.K.; Sanz, V.
Title On the Impact of the LHC Run 2 Data on General Composite Higgs Scenarios Type Journal Article
Year 2022 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2022 Issue Pages 8970837 - 13pp
Keywords (down)
Abstract We study the impact of Run 2 LHC data on general composite Higgs scenarios, where nonlinear effects, mixing with additional scalars, and new fermionic degrees of freedom could simultaneously contribute to the modification of Higgs properties. We obtain new experimental limits on the scale of compositeness, the mixing with singlets and doublets with the Higgs, and the mass and mixing angle of top-partners. We also show that for scenarios where new fermionic degrees of freedom are involved in electroweak symmetry breaking, there is an interesting interplay among Higgs coupling measurements, boosted Higgs properties, SMEFT global analyses, and direct searches for single and double production of vector-like quarks.
Address [Khosa, Charanjit K.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: khosacharanjit@gmail.com;
Corporate Author Thesis
Publisher Hindawi Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000766325700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5153
Permanent link to this record
 

 
Author Coogan, A.; Bertone, G.; Gaggero, D.; Kavanagh, B.J.; Nichols, D.A.
Title Measuring the dark matter environments of black hole binaries with gravitational waves Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 4 Pages 043009 - 22pp
Keywords (down)
Abstract Large dark matter overdensities can form around black holes of astrophysical and primordial origin as they form and grow. This “dark dress” inevitably affects the dynamical evolution of binary systems and induces a dephasing in the gravitational waveform that can be probed with future interferometers. In this paper, we introduce a new analytical model to rapidly compute gravitational waveforms in the presence of an evolving dark matter distribution. We then present a Bayesian analysis determining when dressed black hole binaries can be distinguished from GR-in-vacuum ones and how well their parameters can be measured, along with how close they must be to be detectable by the planned Laser Interferometer Space Antenna (LISA). We show that LISA can definitively distinguish dark dresses from standard binaries and characterize the dark matter environments around astrophysical and primordial black holes for a wide range of model parameters. Our approach can be generalized to assess the prospects for detecting, classifying, and characterizing other environmental effects in gravitational wave physics.
Address [Coogan, Adam; Bertone, Gianfranco] Univ Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: adam.coogan@umontreal.ca;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000761177900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5154
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title Quantum correlations across the horizon in acoustic and gravitational black holes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 4 Pages 045010 - 20pp
Keywords (down)
Abstract We investigate, within the framework of quantum field theory in curved space, the correlations across the horizon of a black hole in order to highlight the particle-partner pair creation mechanism at the origin of Hawking radiation. The analysis concerns both acoustic black holes, formed by Bose-Einstein condensates, and gravitational black holes. More precisely, we have considered a typical acoustic black hole metric with two asymptotic homogeneous regions and the Schwarzschild metric as describing a gravitational black hole. By considering equal-time correlation functions, we find a striking disagreement between the two cases: the expected characteristic peak centered along the trajectories of the Hawking particles and their partners seems to appear only for the acoustic black hole and not for the gravitational Schwarzschild one. The reason for that is the existence of a quantum atmosphere displaced from the horizon as the locus of origin of Hawking radiation together, and this is the crucial aspect, with the presence of a central singularity in the gravitational case swallowing everything is trapped inside the horizon. Correlations, however, are not absent in the gravitational case; to see them, one simply has to consider correlation functions at unequal times, which indeed display the expected peak.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Bologna, Italy, Email: balbinot@bo.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000761172600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5156
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Evidence for a New Structure in the J/psi p and J/psi(p)over-bar Systems in B-s(0) -> J/psi p(p)over-bar Decays Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue 6 Pages 062001 - 11pp
Keywords (down)
Abstract An amplitude analysis of flavor-untagged B-s(0) -> J=psi p (p) over bar decays is performed using a sample of 797 +/- 31 decays reconstructed with the LHCb detector. The data, collected in proton-proton collisions between 2011 and 2018, correspond to an integrated luminosity of 9 fb(-1). Evidence for a new structure in the J=psi p and J=psi(p) over bar systems with a mass of 4337(-4-2)(+7+2) MeV and a width of 29(-12-14)(+26+14) MeV is found, where the first uncertainty is statistical and the second systematic, with a significance in the range of 3.1 to 3.7 sigma, depending on the assigned J(P) hypothesis.
Address [Aaij, R.; Leite, J. Baptist; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; Dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000759202300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5157
Permanent link to this record
 

 
Author Fuster-Martinez, N.; Assmann, R.W.; Bruce, R.; Giovannozzi, M.; Hermes, P.; Mereghetti, A.; Mirarchi, D.; Redaelli, S.; Wenninger, J.
Title Beam-based aperture measurements with movable collimator jaws as performance booster of the CERN Large Hadron Collider Type Journal Article
Year 2022 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 137 Issue 3 Pages 305 - 20pp
Keywords (down)
Abstract The beam aperture of a particle accelerator defines the clearance available for the circulating beams and is a parameter of paramount importance for the accelerator performance. At the CERN Large Hadron Collider (LHC), the knowledge and control of the available aperture is crucial because the nominal proton beams carry an energy of 362 MJ stored in a superconducting environment. Even a tiny fraction of beam losses could quench the superconducting magnets or cause severe material damage. Furthermore, in a circular collider, the performance in terms of peak luminosity depends to a large extent on the aperture of the inner triplet quadrupoles, which are used to focus the beams at the interaction points. In the LHC, this aperture represents the smallest aperture at top-energy with squeezed beams and determines the maximum potential reach of the peak luminosity. Beam-based aperture measurements in these conditions are difficult and challenging. In this paper, we present different methods that have been developed over the years for precise beam-based aperture measurements in the LHC, highlighting applications and results that contributed to boost the operational LHC performance in Run 1 (2010-2013) and Run 2 (2015-2018)
Address [Fuster-Martinez, N.] Inst Fis Corpuscular CSIC UV, Valencia, Spain, Email: nuria.fuster@ific.uv.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000764734000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5160
Permanent link to this record