|   | 
Details
   web
Records
Author Yao, D.L.; Fernandez-Soler, P.; Albaladejo, M.; Guo, F.K.; Nieves, J.
Title Heavy-to-light scalar form factors from Muskhelishvili-Omnes dispersion relations Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 4 Pages 310 - 26pp
Keywords (up)
Abstract By solving the Muskhelishvili-Omnes integral equations, the scalar form factors of the semileptonic heavy meson decays D -> pi(l) over bar nu(l), D -> (K) over bar(l) over bar nu(l), (K) over bar -> pi(l) over bar nu(l) and (B) over bar (s) -> Kl (nu) over bar (l) are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omn\`es matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q(2)=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q(2)=0, we obtain |V-cd| = 0.244 +/- 0.022, |V-cs| = 0.945 +/- 0.041 and |V-ub| = (4.3 +/- 0.7)x10(-3) for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q(2) = 0: |f(+)(D ->eta)(0)| = 0.01 +/- 0.05, |f(+)(Ds ->eta)(0)| = 0.50 +/- 0.08, |f(+)(Ds ->eta)(0)| = 0.73 +/- 0.03 and|f(+)((B) over bar ->eta)(0)| = 0.82 +/- 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q(2)-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.
Address [Yao, D. -L.; Fernandez-Soler, P.; Nieves, J.] UV, Inst Invest Paterna, Ctr Mixto, Inst Fis Corpuscular,CSIC, Apartado 22085, Valencia, Spain, Email: deliang.yao@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000430575000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3568
Permanent link to this record
 

 
Author Valcarce, A.; Vijande, J.; Richard, J.M.; Garcilazo, H.
Title Stability of Heavy Tetraquarks Type Journal Article
Year 2018 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.
Volume 59 Issue 2 Pages 9 - 7pp
Keywords (up)
Abstract We discuss the stability of tetraquark systems with two different masses. After some reminders about the stability of very asymmetric QQ (q) over bar(q) over bar tetraquarks, we demonstrate that in the all-heavy limit q -> Q, the system becomes unstable for standard color-additive models. We also analyze the consequences of symmetry breaking for Qq (Q) over bar(q) over bar configurations: we find a kind of metastability between the lowest threshold Q (Q) over bar + q (q) over bar and the highest one, Q (q) over bar + (Q) over barq, and we calculate the width of the resonance. Our results are consistent with the experimental observation of narrow hadrons lying well above their lowest decay threshold.
Address [Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: valcarce@usal.es;
Corporate Author Thesis
Publisher Springer Wien Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-7963 ISBN Medium
Area Expedition Conference
Notes WOS:000427011200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3574
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Test of lepton flavor universality by the measurement of the B-0 -> D*(-) tau(+) nu(tau) branching fraction using three-prong tau decays Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 7 Pages 072013 - 26pp
Keywords (up)
Abstract The ratio of branching fractions R(D*(-)) = B(B-0 -> D*(-) tau(+)nu(tau))/(B-0 -> D*(-) mu(+)nu(mu)) is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). The tau lepton is reconstructed with three charged pions in the final state. A novel method is used that exploits the different vertex topologies of signal and backgrounds to isolate samples of semitauonic decays of b hadrons with high purity. Using the B-0 -> D*(-) pi(+)pi(-)pi(+) decay as the normalization channel, the ratio B(B-0 -> D*(-) tau(+)nu(tau))/B(B-0 -> D* pi(+)pi(-)pi(+)) is measured to be 1.97 +/- 0.13 +/- 0.18, where the first uncertainty is statistical and the second systematic. An average of branching fraction measurements for the normalization channel is used to derive B(B-0 -> D*(-) tau(+)nu(tau))(_)= (1.42 +/- 0.094 +/- 0.129 +/- 0.054)%, where the third uncertainty is due to the limited knowledge of B(B-0 -> D*(-) pi(+)pi(-)pi(+)). A test of lepton flavor universality is performed using the well- measured branching fraction B(B-0 -> D*(-) mu(+)nu(mu)) to compute R(D*(-))0 = 0.291 +/- 0.019 +/- 0.026 +/- 0.013, where the third uncertainty originates from the uncertainties on B(B-0 -> D*(-) pi(+)pi(-)pi(+)) and B(B-0 -> D*(-) mu(+)nu(mu)) This measurement is in agreement with the Standard Model prediction and with previous measurements.
Address [Bediaga, I.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Lavra, L. Soares; Aoude, R. Tourinho Jadallah] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000430819500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3570
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Measurement of the Ratio of the B-0 -> D*(-)iota(+)v(iota) and B-0 -> D*(-) mu(+)v(mu) Branching Fractions Using Three-Prong tau-Lepton Decays Type Journal Article
Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 120 Issue 17 Pages 171802 - 11pp
Keywords (up)
Abstract The ratio of branching fractions R(D*(-)) equivalent to B(B-0 -> D*(-) iota(+)v(iota))/B(B-0 -> D*(-) mu+ v(mu)) is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). For the first time, R(D*-) is determined using the iota-lepton decays with three charged pions in the final state. The B-0 -> D*(-) iota+ v(iota) yield is normalized to that of the B-0 -> D*(-) pi(+) pi(-) pi(+) mode, providing a measurement B-0 -> D*(-) iota+ v(iota) / B(B-0 -> D*(-) pi(+) pi(-) pi(+)) = 1.97 +/- 0.13 +/- 0.18, where the first uncertainty is statistical and the second systematic. The value of (B-0 -> D*(-) iota+ v(iota)) = (1.42 +/- 0.094 +/- 0.129 +/- 0.054)% is obtained, where the third uncertainty is due to the limited knowledge of the branching fraction of the normalization mode. Using the well-measured branching fraction of the B-0 -> D*(-) mu+ v(mu) decay, a value of R(D*(-)) = 0.291 +/- 0.019 +/- 0.026 +/- 0.013 is established, where the third uncertainty is due to the limited knowledge of the branching fractions of the normalization and B-0 -> D*(-) mu+ v(mu) modes. This measurement is in agreement with the standard model prediction and with previous results.
Address [Bediaga, I.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000430822000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3571
Permanent link to this record
 

 
Author Rinaldi, M.; Ceccopieri, F.A.
Title Hadronic structure from double parton scattering Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 7 Pages 071501 - 6pp
Keywords (up)
Abstract In the present paper we consider the so-called effective cross section, a quantity which encodes the experimental knowledge on double parton scattering in hadronic collisions that has been accumulated so far. We show that the effective cross section, under some assumptions close to those adopted in its experimental extractions, can be used to obtain a range of mean transverse distance between an interacting parton pair in double Noon scattering. Therefore, we have proved that the effective cross section offers a way to access information on the hadronic structure.
Address [Rinaldi, Matteo] Univ Valencia, CSIC, Dept Fis Teoor, IFIC, E-46100 Burjassot, Valencia, Spain, Email: mrinaldi@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000432958600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3578
Permanent link to this record