toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bertolini, S.; Di Luzio, L.; Malinsky, M. url  doi
openurl 
  Title Minimal flipped SO(10) x U(1) supersymmetric Higgs model Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 3 Pages 035002 - 28pp  
  Keywords (up)  
  Abstract We investigate the conditions on the Higgs sector that allow supersymmetric SO(10) grand unified theories to break spontaneously to the standard electroweak model at the renormalizable level. If one considers Higgs representations of dimension up to the adjoint, a supersymmetric standard model vacuum requires, in most cases, the presence of nonrenormalizable operators. The active role of Planck-induced nonrenormalizable operators in the breaking of the gauge symmetry introduces a hierarchy in the mass spectrum at the grand unified theory scale that may be an issue for gauge unification and proton decay. We show that the minimal Higgs scenario that allows for a renormalizable breaking to the standard model is obtained by considering flipped SO(10) circle times U(1) with one adjoint (45(H)) and two pairs of 16(H) circle plus (16) over bar (H) Higgs representations. We consider a nonanomalous matter content and discuss the embedding of the model in an E-6 grand unified scenario just above the flipped SO(10) scale.  
  Address [Bertolini, Stefano; Di Luzio, Luca] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy, Email: bertolin@sissa.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286883700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 565  
Permanent link to this record
 

 
Author Rodriguez, D. et al; Algora, A.; Rubio, B.; Tain, J.L. doi  openurl
  Title MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR Type Journal Article
  Year 2010 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 183 Issue Pages 1-123  
  Keywords (up)  
  Abstract Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.  
  Address [Rodriguez, D.; Lallena, A. M.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain, Email: danielrodriguez@ugr.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280061400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 412  
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A. url  doi
openurl 
  Title Measurement of the mass and width of the D_s1 (2536)+ meson Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 7 Pages 072003 - 14pp  
  Keywords (up)  
  Abstract The decay width and mass of the D-s1(2536)(+) meson are measured via the decay channel D-s1(+) -> (D*+KS0) using 385 fb(-1) of data recorded with the BABAR detector in the vicinity of the Gamma(4S) resonance at the PEP-II asymmetric-energy electron-positron collider. The result for the decay width is Gamma(D-s1(+)) = 92 +/- 0.03(stat.) +/- 0.04(syst.) MeV. For the mass, a value of m(D-s1(+)) = 2535.08 +/- 0.01(stat.) +/- 0.15(syst.) MeV/c(2) is obtained. The mass difference between the D-s1(+) and the D*+ is measured to be m(D-s1(+)) – m(D*+) = 524.83 +/- 0.01(stat.) +/- 0.04(syst.) MeV/c(2), representing a significant improvement compared to the current world average. The unnatural spin-parity assignment for the D-s1(+) meson is confirmed.  
  Address [Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290109300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 613  
Permanent link to this record
 

 
Author BABAR Collaboration (del Amo Sanchez, P. et al); Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A. url  doi
openurl 
  Title Evidence for the decay X(3872) -> J/psi omega Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 1 Pages 011101 - 8pp  
  Keywords (up)  
  Abstract We present a study of the decays B-0,B-+ -> J/psi pi(+)pi(-)pi K-0(0,+), using 467 x 106 B (B) over bar pairs recorded with the BABAR detector. We present evidence for the decay mode X(3872) -> J/psi omega, with product branching fractions B(B+ -> X(3872K(+)) x B(X(3872) -> J/psi omega) = [0.6 +/- 0.2(stat) +/- 0.1(syst)] x 10(-5), and B(B-0 -> X(3872)K-0) x B(X(3872) -> J/psi omega) = [0.6 +/- 0.3(stat) +/- 0.1(syst)] x 10(-5). A detailed study of the pi(+) pi(-) pi(0) mass distribution from X(3872) decay favors a negative-parity assignment.  
  Address [del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAAP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279691200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 414  
Permanent link to this record
 

 
Author Yamagata-Sekihara, J.; Nieves, J.; Oset, E. url  doi
openurl 
  Title Couplings in coupled channels versus wave functions in the case of resonances: Application to the two A(1405) states Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 1 Pages 014003 - 15pp  
  Keywords (up)  
  Abstract In this paper we develop a formalism to evaluate wave functions in momentum and coordinate space for the resonant states dynamically generated in a unitary coupled channel approach. The on-shell approach for the scattering matrix, commonly used, is also obtained in quantum mechanics with a separable potential, which allows one to write wave functions in a trivial way. We develop useful relationships among the couplings of the dynamically generated resonances to the different channels and the wave functions at the origin. The formalism provides an intuitive picture of the resonances in the coupled channel approach, as bound states of one bound channel, which decays into open ones. It also provides an insight and practical rules for evaluating couplings of the resonances to external sources and how to deal with final state interaction in production processes. As an application of the formalism we evaluate the wave functions of the two A(1405) states in the pi Sigma, (K) over barN, and other coupled channels. It also offers a practical way to study three-body systems when two of them cluster into a resonance.  
  Address [Yamagata-Sekihara, J.; Oset, E.] Univ Valencia, Dept Fis Teor, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286761200002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 582  
Permanent link to this record
 

 
Author Cheng, Y.; Csernai, L.P.; Magas, V.K.; Schlei, B.R.; Strottman, D. url  doi
openurl 
  Title Matching stages of heavy-ion collision models Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 81 Issue 6 Pages 064910 - 8pp  
  Keywords (up)  
  Abstract Heavy-ion reactions and other collective dynamical processes are frequently described by different theoretical approaches for the different stages of the process, like initial equilibration stage, intermediate locally equilibrated fluid dynamical stage, and final freeze-out stage. For the last stage, the best known is the Cooper-Frye description used to generate the phase space distribution of emitted, noninteracting particles from a fluid dynamical expansion or explosion, assuming a final ideal gas distribution, or (less frequently) an out-of-equilibrium distribution. In this work we do not want to replace the Cooper-Frye description, but rather clarify the ways of using it and how to choose the parameters of the distribution and, eventually, how to choose the form of the phase space distribution used in the Cooper-Frye formula. Moreover, the Cooper-Frye formula is used in connection with the freeze-out problem, while the discussion of transition between different stages of the collision is applicable to other transitions also. More recently, hadronization and molecular dynamics models have been matched to the end of a fluid dynamical stage to describe hadronization and freeze-out. The stages of the model description can be matched to each other on space-time hypersurfaces (just like through the frequently used freeze-out hypersurface). This work presents a generalized description of how to match the stages of the description of a reaction to each other, extending the methodology used at freeze-out, in simple covariant form which is easily applicable in its simplest version for most applications.  
  Address [Cheng, Yun; Csernai, L. P.] Univ Bergen, Inst Phys & Technol, N-5007 Bergen, Norway, Email: yun.cheng@uib.no  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279267600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 417  
Permanent link to this record
 

 
Author de Azcarraga, J.A.; Izquierdo, J.M. url  doi
openurl 
  Title n-ary algebras: a review with applications Type Journal Article
  Year 2010 Publication Journal of Physics A Abbreviated Journal J. Phys. A  
  Volume 43 Issue 29 Pages 293001 - 117pp  
  Keywords (up)  
  Abstract This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two-entry Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the role of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity, and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity. 3-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. As a result, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations ( it turns out that Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the Lie or n-Lie algebra bracket is relaxed, one is led to a more general type of n-algebras, the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose generalized Jacobi identity reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the Filippov identity and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A(4) model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization.  
  Address [de Azcarraga, J. A.] Univ Valencia, Dept Theoret Phys, Fac Phys, E-46100 Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-8113 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279463100003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 419  
Permanent link to this record
 

 
Author BABAR Collaboration (del Amo Sanchez, P. et al); Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A. url  doi
openurl 
  Title Search for CP violation using T-odd correlations in D-0 -> K+K-pi(+)pi(-) decays Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 11 Pages 111103 - 8pp  
  Keywords (up)  
  Abstract We search for CP violation in a sample of 4.7 x 10(4) Cabibbo suppressed D-0 -> K+K-pi(+)pi(-) decays. We use 470 fb(-1) of data recorded by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) storage rings running at center-of-mass energies near 10.6 GeV. CP violation is searched for in the difference between the T-odd asymmetries, obtained using triple product correlations, measured for D-0 and (D) over bar (0) decays. The measured CP violation parameter is A(T) = (1.0 +/- 5.1(stat) +/- 4.4(syst)) x 10(-3).  
  Address [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279159500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 420  
Permanent link to this record
 

 
Author Mayoral, C.; Recati, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Carusotto, I. url  doi
openurl 
  Title Acoustic white holes in flowing atomic Bose-Einstein condensates Type Journal Article
  Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 13 Issue Pages 025007 - 29pp  
  Keywords (up)  
  Abstract We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method, which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.  
  Address [Recati, Alessio; Carusotto, Iacopo] Univ Trent, INO CNR BEC Ctr, I-38123 Povo, Italy, Email: carusott@science.unitn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287855400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 556  
Permanent link to this record
 

 
Author Giordano, G.; Mena, O.; Mocioiu, I. url  doi
openurl 
  Title Atmospheric neutrino oscillations and tau neutrinos in ice Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 11 Pages 113008 - 5pp  
  Keywords (up)  
  Abstract The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. Controlling systematic uncertainties will be the limiting factor in the analysis. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.  
  Address [Giordano, Gerardo; Mocioiu, Irina] Penn State Univ, Dept Phys, University Pk, PA 16802 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279159600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 421  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva