|   | 
Details
   web
Records
Author Villanueva-Domingo, P.; Gariazzo, S.; Gnedin, N.Y.; Mena, O.
Title Was there an early reionization component in our universe? Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 024 - 17pp
Keywords (down) cosmological parameters from CMBR; reionization
Abstract A deep understanding of the epoch of reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between z similar or equal to 6 and z similar or equal to 20, at present one could ask what kind of reionization processes are allowed by present cosmic microwave background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. By considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike information criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth tau.
Address [Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: pablo.villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000429339200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3555
Permanent link to this record
 

 
Author Forconi, M.; Ruchika; Melchiorri, A.; Mena, O.; Menci, N.
Title Do the early galaxies observed by JWST disagree with Planck's CMB polarization measurements? Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 012 - 16pp
Keywords (down) cosmological parameters from CMBR; high redshift galaxies; CMBR polarisation; reionization
Abstract The recent observations from the James Webb Space Telescope have led to a surprising discovery of a significant density of massive galaxies with masses of M >= 10(10.5)M(circle dot) at redshifts of approximately z similar to 10. This corresponds to a stellar mass density of roughly rho* similar to 10(6)M(circle dot) Mpc(-3). Despite making conservative assumptions regarding galaxy formation, this finding may not be compatible with the standard.CDM cosmology that is favored by observations of CMB Anisotropies from the Planck satellite. In this paper, we confirm the substantial discrepancy with Planck's results within the.CDM framework. Assuming a value of is an element of = 0.2 for the efficiency of converting baryons into stars, we indeed find that the.CDM model is excluded at more than 99.7% confidence level (C.L.). An even more significant exclusion is found for is an element of similar to 0.1, while a better agreement, but still in tension at more than 95%, is obtained for is an element of = 0.32. This tension, as already discussed in the literature, could arise either from systematics in the JWST measurements or from new physics. Here, as a last-ditch effort, we point out that disregarding the large angular scale polarization obtained by Planck, which allows for significantly larger values of the matter clustering parameter sigma(8), could lead to better agreement between Planck and JWST within the.CDM framework. Assuming.CDM and no systematics in the current JWST results, this implies either an unknown systematic error in current large angular scale CMB polarization measurements or an unidentified physical mechanism that could lower the expected amount of CMB polarization produced during the epoch of reionization. Interestingly, the model compatible with Planck temperature-only data and JWST observation also favors a higher Hubble constant H-0 = 69.0 +/- 1.1 km/s/Mpc at 68% C.L., in better agreement with observations based on SN-Ia luminosity distances.
Address [Forconi, Matteo; Ruchika; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001142721200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5903
Permanent link to this record
 

 
Author Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.
Title Cold dark matter plus not-so-clumpy dark relics Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 008 - 17pp
Keywords (down) cosmological parameters from CMBR; dark matter theory; dwarfs galaxies; particle physics – cosmology connection
Abstract Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f(ncdm) of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2 sigma limits for non-cold dark matter particles with masses in the range 1-10 keV are f(ncdm) <= 0.29 (0.23) for fermions (bosons), and for masses in the 10-100 keV range they are f(ncdm) <= 0.43 (0.45), respectively.
Address [Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph] Univ Amsterdam, Inst Phys, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: r.diamanti@uva.nl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000403482400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3174
Permanent link to this record
 

 
Author Zhai, Y.J.; Giare, W.; van de Bruck, C.; Di Valentino, E.; Mena, O.; Nunes, R.C.
Title A consistent view of interacting dark energy from multiple CMB probes Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 032 - 16pp
Keywords (down) cosmological parameters from CMBR; dark energy theory
Abstract We analyze a cosmological model featuring an interaction between dark energy and dark matter in light of the measurements of the Cosmic Microwave Background released by three independent experiments: the most recent data by the Planck satellite and the Atacama Cosmology Telescope, and WMAP (9-year data). We show that different combinations of the datasets provide similar results, always favoring an interacting dark sector with a 95% C.L. significance in the majority of the cases. Remarkably, such a preference remains consistent when cross-checked through independent probes, while always yielding a value of the expansion rate H0 consistent with the local distance ladder measurements. We investigate the source of this preference by scrutinizing the angular power spectra of temperature and polarization anisotropies as measured by different experiments.
Address [Zhai, Yuejia; Giare, William; van de Bruck, Carsten; Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: yzhai13@sheffield.ac.uk;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001066525900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5673
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I.
Title Lepton number asymmetries and the lower bound on the reheating temperature Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 037 - 13pp
Keywords (down) cosmological neutrinos; physics of the early universe
Abstract We show that the reheating temperature of a matter-domination era in the early universe can be pushed down to the neutrino decoupling temperature at around 2 MeV if the reheating takes place through non-hadronic decays of the dominant matter and neutrino-antineutrino asymmetries are still large enough, vertical bar L vertical bar greater than or similar to O(10(-2)) (depending on the neutrino flavor) at the end of reheating.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000418672700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3430
Permanent link to this record