toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E.; Gariazzo, S.; Mena, O. url  doi
openurl 
  Title Model marginalized constraints on neutrino properties from cosmology Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 4 Pages 043540 - 9pp  
  Keywords (up)  
  Abstract We present robust, model-marginalized limits on both the total neutrino mass (E m1,) and abundances (Neff) to minimize the role of parametrizations, priors and models when extracting neutrino properties from cosmology. The cosmological observations we consider are cosmic microwave background temperature fluctuation and polarization measurements, supernovae Ia luminosity distances, baryon acoustic oscillation observations and determinations of the growth rate parameter from the Data Release 16 of the Sloan Digital Sky Survey IV. The degenerate neutrino mass spectrum (which implies the prior sigma m(1), > 0) is weakly or moderately preferred over the normal and inverted hierarchy possibilities, which imply the priors sigma m(1), > 0.06 and sigma m(1), > 0.1 eV respectively. Concerning the underlying cosmological model, the ACDM minimal scenario is almost always strongly preferred over the possible extensions explored here. The most constraining 95% CL bound on the total neutrino mass in the ACDM + sigma m(1), picture is sigma m(1), < 0.087 eV. The parameter N-eff is restricted to 3.08 +/- 0.17 (68% CL) in the ACDM + Neff model. These limits barely change when considering the ACDM + sigma m(1), + Neff scenario. Given the robustness and the strong constraining power of the cosmological measurements employed here, the model -marginalized posteriors obtained considering a large spectra of nonminimal cosmologies are very close to the previous bounds, obtained within the ACDM framework in the degenerate neutrino mass spectrum. Future cosmological measurements may improve the current Bayesian evidence favoring the degenerate neutrino mass spectra, challenging therefore the consistency between cosmological neutrino mass bounds and oscillation neutrino measurements, and potentially suggesting a more complicated cosmological model and/or neutrino sector.  
  Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000862804700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5375  
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L. url  doi
openurl 
  Title Search for a light Z' in the L-mu – L-tau scenario with the NA64-e experiment at CERN Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 3 Pages 032015 - 12pp  
  Keywords (up)  
  Abstract The extension of Standard Model made by inclusion of additional U(1) gauge L-mu – L-tau symmetry can explain the difference between the measured and the predicted value of the muon magnetic moment and solve the tension in B meson decays. This model predicts the existence of a new, light Z' vector boson, predominantly coupled to second and third generation leptons, whose interaction with electrons is due to a loop mechanism involving muons and taus. In this work, we present a rigorous evaluation of the upper limits in the Z' parameter space, obtained from the analysis of the data collected by the NA64-e experiment at CERN SPS, that performed a search for light dark matter with 2.84 x 10(11) electrons impinging with 100 GeV on an active thick target. The resulting limits touch the muon g – 2 preferred band for values of the Z' mass of order of 1 MeV, while the sensitivity projections for the future high-statistics NA64-e runs demonstrate the power of the electrons/positron beam approach in this theoretical scenario.  
  Address [Andreev, Yu M.; Dermenev, A., V; Gninenko, S. N.; Karneyeu, A. E.; Kirpichnikov, D., V; Kirsanov, M. M.; Kravchuk, L., V; Krasnikov, N., V; Tlisova, I; Toropin, A. N.] Inst Nucl Res, Moscow 117312, Russia, Email: luca.marsicano@ge.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000862798400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5376  
Permanent link to this record
 

 
Author Horak, J.; Ihssen, F.; Papavassiliou, J.; Pawlowski, J.M.; Weber, A.; Wetterich, C. url  doi
openurl 
  Title Gluon condensates and effective gluon mass Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 13 Issue 2 Pages 042 - 40pp  
  Keywords (up)  
  Abstract Lattice simulations along with studies in continuum QCD indicate that non-perturbative quantum fluctuations lead to an infrared regularisation of the gluon propagator in covariant gauges in the form of an effective mass-like behaviour. In the present work we propose an analytic understanding of this phenomenon in terms of gluon condensation through a dynamical version of the Higgs mechanism, leading to the emergence of color condensates. Within the functional renormalisation group approach we compute the effective potential of covariantly constant field strengths, whose non-trivial minimum is related to the color condensates. In the physical case of an SU(3) gauge group this is an octet condensate. The value of the gluon mass obtained through this procedure compares very well to lattice results and the mass gap arising from alternative dynamical scenarios.  
  Address [Horak, Jan; Ihssen, Friederike; Pawlowski, Jan M.; Weber, Axel; Wetterich, Christof] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863121000008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5379  
Permanent link to this record
 

 
Author Ferreiro, A.; Pla, S. url  doi
openurl 
  Title Adiabatic regularization and preferred vacuum state for the lambda phi^4 field theory in cosmological spacetimes Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 6 Pages 065015 - 12pp  
  Keywords (up)  
  Abstract We extend the method of adiabatic regularization by introducing an arbitrary parameter μfor a scalar field with quartic self-coupling in a Friedmann-Lemaitre-Robertson-Walker spacetime at one-loop order. The subtraction terms constructed from this extended version allow us to define a preferred vacuum state at a fixed time ri 1/4 ri0 for this theory. We compute this vacuum state for two commonly used background fields in cosmology, specially in the context of preheating. We also give a possible prescription for an adequate value for mu.  
  Address [Ferreiro, Antonio] Dublin City Univ, Ctr Astrophys & Relat, Sch Math Sci, Dublin, Ireland, Email: antonio.ferreiro@dcu.ie;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000862258200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5382  
Permanent link to this record
 

 
Author Batra, A.; Bharadwaj, P.; Mandal, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title W-mass anomaly in the simplest linear seesaw mechanism Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 834 Issue Pages 137408 - 12pp  
  Keywords (up)  
  Abstract The simplest linear seesaw mechanism can accommodate the new CDF-II W mass measurement. In addition to Standard Model particles, the model includes quasi-Dirac leptons, and a second, leptophilic, scalar doublet seeding small neutrino masses. Our proposal is consistent with electroweak precision tests, neutrino physics, rare decays and collider restrictions, requiring a new charged scalar below a few TeV, split in mass from the new degenerate scalar and pseudoscalar neutral Higgs bosons.  
  Address [Batra, Aditya; Bharadwaj, Praveen; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: adityab17@iiserb.ac.in;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000864095300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5384  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva