toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C. url  doi
openurl 
  Title Cold dark matter plus not-so-clumpy dark relics Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 008 - 17pp  
  Keywords (down) cosmological parameters from CMBR; dark matter theory; dwarfs galaxies; particle physics – cosmology connection  
  Abstract Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f(ncdm) of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2 sigma limits for non-cold dark matter particles with masses in the range 1-10 keV are f(ncdm) <= 0.29 (0.23) for fermions (bosons), and for masses in the 10-100 keV range they are f(ncdm) <= 0.43 (0.45), respectively.  
  Address [Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph] Univ Amsterdam, Inst Phys, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: r.diamanti@uva.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000403482400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3174  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Lesgourgues, J.; Pastor, S. url  doi
openurl 
  Title Calculation of the local density of relic neutrinos Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 034 - 24pp  
  Keywords (down) cosmological neutrinos; dark matter simulations; galaxy clustering; neutrino experiments  
  Abstract Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV. We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N – one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.  
  Address [de Salas, P. F.; Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411617000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3308  
Permanent link to this record
 

 
Author Adhikari, R. et al; Pastor, S.; Valle, J.W.F. url  doi
openurl 
  Title A White Paper on keV sterile neutrino Dark Matter Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 025 - 247pp  
  Keywords (down) cosmological neutrinos; dark matter experiments; dark matter theory; particle physics – cosmology connection  
  Abstract We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved – cosmology, astrophysics, nuclear, and particle physics – in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.  
  Address [Drewes, M.; Ibarra, A.; Lasserre, T.; Oberauer, L.; Schoenert, S.] Tech Univ Munich, Phys Dept & Excellence Cluster Univ, James Franck Str 1, D-85748 Garching, Germany, Email: marcodrewes@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399409800025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3109  
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P. url  doi
openurl 
  Title The Strong Force meets the Dark Sector: a robust estimate of QCD uncertainties for anti-matter dark matter searches Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 119 - 48pp  
  Keywords (down) Cosmic Rays; Particle Nature of Dark Matter; Specific QCD Phenomenology  
  Abstract In dark-matter annihilation channels to hadronic final states, stable particles – such as positrons, photons, antiprotons, and antineutrinos – are produced via complex sequences of phenomena including QED/QCD radiation, hadronisation, and hadron decays. These processes are normally modelled by Monte Carlo (MC) event generators whose limited accuracy imply intrinsic QCD uncertainties on the predictions for indirect-detection experiments like Fermi-LAT, Pamela, IceCube or Ams-02. In this article, we perform a comprehensive analysis of QCD uncertainties, meaning both perturbative and nonperturbative sources of uncertainty are included – estimated via variations of MC renormalization-scale and fragmentation-function parameters, respectively – in antimatter spectra from dark-matter annihilation, based on parametric variations of the Pythia 8 event generator. After performing several retunings of light-quark fragmentation functions, we define a set of variations that span a conservative estimate of the QCD uncertainties. We estimate the effects on antimatter spectra for various annihilation channels and final-state particle species, and discuss their impact on fitted values for the dark-matter mass and thermally-averaged annihilation cross section. We find dramatic impacts which can go up to O(10%) for the annihilation cross section. We provide the spectra in tabulated form including QCD uncertainties and code snippets to perform fast dark-matter fits, in this github repository.  
  Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Particle Theory & Cosmol Grp, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001165531600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5956  
Permanent link to this record
 

 
Author Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title The isotropic radio background revisited Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 008 - 36pp  
  Keywords (down) cosmic ray theory; galactic magnetic fields; dark matter theory  
  Abstract We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.  
  Address [Fornengo, Nicolao; Regis, Marco] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy, Email: fornengo@to.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334496500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1772  
Permanent link to this record
 

 
Author Bringmann, T.; Donato, F.; Lineros, R.A. url  doi
openurl 
  Title Radio data and synchrotron emission in consistent cosmic ray models Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 049 - 12pp  
  Keywords (down) cosmic ray theory; dark matter theory  
  Abstract It is well established that phenomenological two-zone diffusion models of the galactic halo can very well reproduce cosmic-ray nuclear data and the observed antiproton flux. Here, we consider lepton propagation in such models and compute the expected galactic population of electrons, as well as the diffuse synchrotron emission that results from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors very large (L greater than or similar to 15 kpc) and, even stronger, small (L less than or similar to 1 kpc) effective diffusive halo sizes. This has profound implications for, e.g., in direct dark matter searches.  
  Address [Bringmann, Torsten] Univ Hamburg, Inst Theoret Phys, D-22761 Hamburg, Germany, Email: torsten.bringmann@desy.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 938  
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P. url  doi
openurl 
  Title Impact of QCD uncertainties on antiproton spectra from dark-matter annihilation Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 068 - 15pp  
  Keywords (down) cosmic ray theory; dark matter simulations; cosmic ray experiments; Frequentist statistics  
  Abstract Dark-matter particles that annihilate or decay can undergo complex sequences of processes, including strong and electromagnetic radiation, hadronisation, and hadron de-cays, before particles that are stable on astrophysical time scales are produced. Antiprotons produced in this way may leave footprints in experiments such as AMS-02. Several groups have reported an excess of events in the antiproton flux in the rigidity range of 10-20 GV. However, the theoretical modeling of baryon production is not straightforward and relies in part on phenomenological models in Monte Carlo event generators. In this work, we assess the impact of QCD uncertainties on the spectra of antiprotons from dark-matter annihila-tion. As a proof-of-principle, we show that for a two-parameter model that depends only on the thermally-averaged annihilation cross section ((o -v)) and the dark-matter mass (Mx), QCD uncertainties can affect the best-fit mass by up to ti 14% (with large uncertainties for large DM masses), depending on the choice of Mx and the annihilation channel (bb over bar or W+W-), and (o -v) by up to ti 10%. For comparison, changes to the underlying diffusion parameters are found to be within 1%-5%, and the results are also quite resilient to the choice of cosmic-ray propagation model. These findings indicate that QCD uncertainties need to be included in future DM analyses. To facilitate full-fledged analyses, we provide the spectra in tabulated form including QCD uncertainties and code snippets to perform mass interpolations and quick DM fits. The code can be found in this GitHub [1] repository.  
  Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000985779900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5532  
Permanent link to this record
 

 
Author Giare, W.; Di Valentino, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title New cosmological bounds on hot relics: axions and neutrinos Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 505 Issue 2 Pages 2703-2711  
  Keywords (down) cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations  
  Abstract Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyse two different thermal processes within a realistic mixed hot dark matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel, we derive our most constraining bounds on the hot relic masses m(a) < 7.46 eV and Sigma m(nu) < 0.114 eV both at 95 percent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions, and remaining in the range of validity of the chiral perturbation theory, our most constraining bounds are improved to m(a) < 0.91 eV and Sigma m(nu) < 0.105 eV, both at 95 percent CL. Interestingly, in both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering prediction. If future terrestrial double beta decay and/or long-baseline neutrino experiments find that the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed thermal axion window. Our results therefore, strongly support multi messenger searches of axions and neutrino properties, together with joint analyses of their expected sensitivities.  
  Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000672803400085 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4912  
Permanent link to this record
 

 
Author Giare, W.; Renzi, F.; Melchiorri, A.; Mena, O.; Di Valentino, E. url  doi
openurl 
  Title Cosmological forecasts on thermal axions, relic neutrinos, and light elements Type Journal Article
  Year 2022 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 511 Issue 1 Pages 1373-1382  
  Keywords (down) cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations  
  Abstract One of the targets of future cosmic microwave background (CMB) and baryon acoustic oscillation measurements is to improve the current accuracy in the neutrino sector and reach a much better sensitivity on extra dark radiation in the early Universe. In this paper, we study how these improvements can be translated into constraining power for well-motivated extensions of the standard model of elementary particles that involve axions thermalized before the quantum chromodynamics (QCD) phase transition by scatterings with gluons. Assuming a fiducial Lambda cold dark matter cosmological model, we simulate future data for Stage-IV CMB-like and Dark Energy Spectroscopic Instrument (DESI)-like surveys and analyse a mixed scenario of axion and neutrino hot dark matter. We further account also for the effects of these QCD axions on the light element abundances predicted by big bang nucleosynthesis. The most constraining forecasted limits on the hot relic masses are m(a) less than or similar to 0.92 eV and n-ary sumation m(nu) less than or similar to 0.12 eV at 95 per cent Confidence Level, showing that future cosmic observations can substantially improve the current bounds, supporting multimessenger analyses of axion, neutrino, and primordial light element properties.  
  Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000770034000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5192  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P11006 - 20pp  
  Keywords (down) Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.  
  Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345026000020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2061  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva