|   | 
Details
   web
Records
Author Sun, Z.F.; Xie, J.J.; Oset, E.
Title Bottom strange molecules with isospin 0 Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 9 Pages 094031 - 9pp
Keywords (up)
Abstract Using the local hidden gauge approach, we study the possibility of the existence of bottom strange molecular states with isospin 0. We find three bound states with spin parity 0(+), 1(+), and 2(+) generated by the (K) over bar *B* and omega B-s(*) interaction, among which the state with spin 2 can be identified as B(s2)(*()5840). In addition, we also study the (K) over bar *B* and omega B-s(*) interaction and find a bound state which can be associated to B-s1(5830). In addition, the (K) over barB*, eta B-s(*)(K) over barB, and eta B-s systems are studied, and two bound states are predicted. We expect that further experiments can confirm our predictions.
Address [Sun, Zhi-Feng] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China, Email: sunzf@lzu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000433912000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3615
Permanent link to this record
 

 
Author Liang, W.H.; Dias, J.M.; Debastiani, V.R.; Oset, E.
Title Molecular Omega(b) states Type Journal Article
Year 2018 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 930 Issue Pages 524-532
Keywords (up)
Abstract Motivated by the recent finding of five Omega(c) states by the LHCb collaboration, and the successful reproduction of three of them in a recent approach searching for molecular states of meson-baryon with the quantum numbers of Omega(c), we extend these ideas and make predictions for the interaction of meson-baryon in the beauty sector, searching for poles in the scattering matrix that correspond to physical states. We find several Omega(b) states: two states with masses 6405 MeV and 6465 MeV for J(P) = 1/2(-) ; two more states with masses 6427 MeV and 6665 MeV for 3/4(-) ; and three states between 6500 and 6820 MeV, degenerate with J(P) = 1/2(-), 3/4(-), stemming from the interaction of vector-baryon in the beauty sector.
Address [Liang, Wei-Hong] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000435647100019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3636
Permanent link to this record
 

 
Author Pavao, R.; Sakai, S.; Oset, E.
Title Production of N*(1535) and N*(1650) in Lambda(c)-> (K)over-bar(0)eta p (pi N) decay Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 98 Issue 1 Pages 015201 - 8pp
Keywords (up)
Abstract To study the properties of the N*(1535) and N*(1650), we calculate the mass distributions of MB in the Lambda(c) -> (K) over bar (MB)-M-0 decay, with MB = pi N(I = 1/2), eta p, and K Sigma(I = 1/2). We do this by calculating the tree-level and loop contributions, mixing pseudoscalar-baryon and vector-baryon channels using the local hidden gauge formalism. The loop contributions for each channel are calculated using the chiral unitary approach. We observe that for the eta N mass distribution only the N* (1535) is seen, with the N* (1650) contributing to the width of the curve, but for the pi N mass distribution both resonances are clearly visible. In the case of MB = K Sigma, we found that the strength of the K E mass distribution is smaller than that of the mass distributions of the pi N and eta p in the Lambda(+)(c)-> (K) over bar (0)pi N and Lambda(+)(c) -> (K) over bar (0)eta p processes, in spite of this channel having a large coupling to the N* (1650). This is because the K Sigma pair production is suppressed in the primary production from the Lambda(c) decay.
Address [Pavao, R.] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teor, Valencia 46071, Spain, Email: rpavao@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000436940200003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3643
Permanent link to this record
 

 
Author Liang, W.H.; Oset, E.
Title Pseudoscalar or vector meson production in non-leptonic decays of heavy hadrons Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 6 Pages 528 - 26pp
Keywords (up)
Abstract We have addressed the study of non-leptonic weak decays of heavy hadrons (Lambda b, Lambda c, B and D), with external and internal emission to give two final hadrons, taking into account the spin-angular momentum structure of the mesons and baryons produced. A detailed angular momentum formulation is developed which leads to easy final formulas. By means of them we have made predictions for a large amount of reactions, up to a global factor, common tomany of them, that we take from some particular data. Comparing the theoretical predictions with the experimental data, the agreement found is quite good in general and the discrepancies should give valuable information on intrinsic form factors, independent of the spin structure studied here. The formulas obtained are also useful in order to evaluate meson-meson or meson-baryon loops, for instance of B decays, in which one has PP, PV, VP or VV intermediate states, with P for pseudoscalar mesons and V for vector meson and lay the grounds for studies of decays into three final particles.
Address [Liang, Wei-Hong] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000437225200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3644
Permanent link to this record
 

 
Author Oset, E.; Roca, L.
Title Triangle mechanism in tau -> f(1)(1285)pi nu(tau) decay Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 782 Issue Pages 332-338
Keywords (up)
Abstract We show that the tau(-) decay into f(1)(1285) pi(-)nu(tau) is dominated by a triangle loop mechanism with K*, (K) over bar* and K( or (K) over bar) as internal lines, which manifests a strong enhancement reminiscent of a nearby singularity present in the narrow K* limit and the near (K) over bar* K* threshold of the internal K* propagators. The f1(1285) is then produced by its coupling to the K* (K) over bar and (K) over bar* K which is obtained from a previous model where this resonance was dynamically generated as a molecular K* (K) over bar (or (K) over bar* K) state using the techniques of the chiral unitary approach. We make predictions for the f(1)pi mass distribution which significantly deviates from the phase-space shape, due to the distortion caused by the triangle mechanism and the K* (K) over bar threshold. We find a good agreement with the experimental value within uncertainties for the integrated partial decay width, which is a clear indication of the importance of the triangle mechanism in this decay and supports the dynamical origin of the f(1)(1285) as a K* (K) over bar and (K) over bar* K molecular state.
Address [Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: luisroca@um.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000438486900054 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3663
Permanent link to this record