|   | 
Details
   web
Records
Author Candido, A.; Garcia, A.; Magni, G.; Rabemananjara, T.; Rojo, J.; Stegeman, R.
Title Neutrino structure functions from GeV to EeV energies Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 149 - 78pp
Keywords (down) Deep Inelastic Scattering or Small-x Physics; Neutrino Interactions; Parton Distributions
Abstract The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers (Q(2) less than or similar to few GeV2), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies E-nu up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to the multi-EeV region accessible at neutrino telescopes. Our NNSF nu approach combines a machine-learning parametrisation of experimental data with pQCD calculations based on state-of-the-art analyses of proton and nuclear parton distributions (PDFs). We compare our determination to other calculations, in particular to the popular Bodek-Yang model. We provide updated predictions for inclusive cross sections for a range of energies and target nuclei, including those relevant for LHC far-forward neutrino experiments such as FASER nu, SND@LHC, and the Forward Physics Facility. The NNSF nu determination is made available as fast interpolation LHAPDF grids, and it can be accessed both through an independent driver code and directly interfaced to neutrino event generators such as GENIE.
Address [Candido, Alessandro] Univ Milan, Dipartimento Fis, Tif Lab, Via Celoria 16, I-20133 Milan, Italy, Email: alessandro.candido@mi.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992767300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5559
Permanent link to this record
 

 
Author NOMAD Collaboration (Samoylov, O. et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Hernando, J.
Title A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment Type Journal Article
Year 2013 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 876 Issue 2 Pages 339-375
Keywords (down) Charm production; Strange quark content of the nucleon; Dimuon charm production; Neutrino interactions
Abstract We present our new measurement of the cross-section for charm dimuon production in neutrino iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample – about 9 x 10(6) events after all analysis cuts – and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to similar to 2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of m(c)(m(c)) = 1.159 +/- 0.075 GeV/c(2) for the running mass of the charm quark in the (MS) over bar scheme and a strange quark sea suppression factor of kappa(s) = 0.591 +/- 0.019 at Q(2) = 20 GeV2/c(2).
Address [Bassompierre, G.; Gaillard, J. -M.; Gouanere, M.; Krasnoperov, A.; Mendiburu, J. -P.; Nedelec, P.; Pessard, H.; Sillou, D.] LAPP, Annecy, France, Email: Roberto.Petti@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000325903700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1625
Permanent link to this record
 

 
Author Pompa, F.; Schwetz, T.; Zhu, J.Y.
Title Impact of nuclear matrix element calculations for current and future neutrinoless double beta decay searches Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 104 - 29pp
Keywords (down) Baryon; Lepton Number Violation; Neutrino Interactions
Abstract Nuclear matrix elements (NME) are a crucial input for the interpretation of neutrinoless double beta decay data. We consider a representative set of recent NME calculations from different methods and investigate the impact on the present bound on the effective Majorana mass m(& beta;& beta;) by performing a combined analysis of the available data as well as on the sensitivity reach of future projects. A crucial role is played by the recently discovered short-range contribution to the NME, induced by light Majorana neutrino masses. Depending on the NME model and the relative sign of the long- and short-range contributions, the current 3 & sigma; bound can change between m(& beta;& beta;)< 40 meV and 600 meV. The sign-uncertainty may either boost the sensitivity of next-generation experiments beyond the region for m(& beta;& beta;) predicted for inverted mass ordering or prevent even advanced setups to reach this region. Furthermore, we study the possibility to distinguish between different NME calculations by assuming a positive signal and by combining measurements from different isotopes. Such a discrimination will be impossible if the relative sign of the long- and short-range contribution remains unknown, but can become feasible if m(& beta;& beta;) & GSIM; 40 meV and if the relative sign is known to be positive. Sensitivities will be dominated by the advanced Ge-76 and Xe-136 setups assumed here, but NME model-discrimination improves if data from a third isotope is added, e.g., from Te-130 or Mo-100.
Address [Pompa, Federica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Parc Cientif UV, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: zhujingyu@sjtu.edu.cn
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001016276900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5580
Permanent link to this record