toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Borsato, M. et al; Zurita, J.; Henry, L.; Jashal, B.K.; Oyanguren, A. url  doi
openurl 
  Title Unleashing the full power of LHCb to probe stealth new physics Type Journal Article
  Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 85 Issue 2 Pages 024201 - 45pp  
  Keywords (up) LHCb; stealth physics; BSM physics; hidden sectors; long-lived particles; dark matter  
  Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.  
  Address [Borsato, M.] Heidelberg Univ, Phys Inst, Heidelberg, Germany, Email: xabier.cid.vidal@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762056700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5151  
Permanent link to this record
 

 
Author Caputo, A.; Esposito, A.; Geoffray, E.; Polosa, A.D.; Sun, S.C. url  doi
openurl 
  Title Dark matter, dark photon and superfluid He-4 from effective field theory Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 802 Issue Pages 135258 - 6pp  
  Keywords (up) Light dark matter; Effective theory; Helium; Phonon; Dark photon  
  Abstract We consider a model of sub-GeV dark matter whose interaction with the Standard Model is mediated by a new vector boson (the dark photon) which couples kinetically to the photon. We describe the possibility of constraining such a model using a superfluid He-4 detector, by means of an effective theory for the description of the superfluid phonon. We find that such a detector could provide bounds that are competitive with other direct detection experiments only for ultralight vector mediator, in agreement with previous studies. As a byproduct we also present, for the first time, the low-energy effective field theory for the interaction between photons and phonons.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: angelo.esposito@epfl.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515091400017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4349  
Permanent link to this record
 

 
Author Andreev, Y.M. et al; Molina Bueno, L.; Tuzi, M. url  doi
openurl 
  Title Measurement of the intrinsic hadronic contamination in the NA64-e high-purity e+/e- beam at CERN Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1057 Issue Pages 168776 - 8pp  
  Keywords (up) Light dark matter; Missing-energy experiment; H4 beamline; Hadron contamination  
  Abstract We present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c. The analysis, performed using data collected by the NA64-e experiment in 2022, is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64 detector. We determined the contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those from a dedicated setup, in which only hadrons impinged on the detector. We also obtained an estimate of the relative protons, antiprotons and pions yield by exploiting the different absorption probabilities of these particles in matter. We cross-checked our results with a dedicated Monte Carlo simulation for the hadron production at the primary T2 target, finding a good agreement with the experimental measurements.  
  Address [Andreev, Yu. M.; Chumakov, A. G.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Frolov, V. N.; Gerassimov, S. G.; Gninenko, S. N.; Kachanov, V. A.; Kambar, Y.; Karneyeu, A. E.; Kirsanov, M. M.; Kolosov, V. N.; Gertsenberger, S. V.; Kasianova, E. A.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Mikhailov, Yu. V.; Bueno, L. Molina; Peshekhonov, D. V.; Polyakov, V. A.; Salamatin, K.; Samoylenko, V. D.; Shchukin, D.; Tikhomirov, V. O.; Tlisova, I.; Toropin, A. N.; Trifonov, A. Yu.; Vasilishin, B. I.; Volkov, P. V.; Volkov, V. Yu.; Voronchikhin, I. V.; Zhevlakov, A. S.] CERN, Geneva, Switzerland, Email: pietro.bisio@ge.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001154863600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5923  
Permanent link to this record
 

 
Author de los Rios, M.; Petac, M.; Zaldivar, B.; Bonaventura, N.R.; Calore, F.; Iocco, F. url  doi
openurl 
  Title Determining the dark matter distribution in simulated galaxies with deep learning Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 525 Issue 4 Pages 6015-6035  
  Keywords (up) methods: data analysis; software: simulations; galaxies: general; galaxies: haloes; dark matter  
  Abstract We present a novel method of inferring the dark matter (DM) content and spatial distribution within galaxies, using convolutional neural networks (CNNs) trained within state-of-the-art hydrodynamical simulations (Illustris-TNG100). Within the controlled environment of the simulation, the framework we have developed is capable of inferring the DM mass distribution within galaxies of mass similar to 10(11)-10(13)M(circle dot) from the gravitationally baryon-dominated internal regions to the DM-rich, baryon-depleted outskirts of the galaxies, with a mean absolute error always below approximate to 0.25 when using photometrical and spectroscopic information. With respect to traditional methods, the one presented here also possesses the advantages of not relying on a pre-assigned shape for the DM distribution, to be applicable to galaxies not necessarily in isolation, and to perform very well even in the absence of spectroscopic observations.  
  Address [de los Rios, Martin] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil, Email: fabio.iocco.astro@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001072112100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5707  
Permanent link to this record
 

 
Author Bas i Beneito, A.; Herrero-Garcia, J.; Vatsyayan, D. url  doi
openurl 
  Title Multi-component dark sectors: symmetries, asymmetries and conversions Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 075 - 31pp  
  Keywords (up) Models for Dark Matter; Particle Nature of Dark Matter  
  Abstract We study the relic abundance of several stable particles from a generic dark sector, including the possible presence of dark asymmetries. After discussing the different possibilities for stabilising multi-component dark matter, we analyse the final relic abundance of the symmetric and asymmetric dark matter components, paying special attention to the role of the unavoidable conversions between dark matter states. We find an exponential dependence of the asymmetries of the heavier components on annihilations and conversions. We conclude that having similar symmetric and asymmetric components is a natural outcome in many scenarios of multi-component dark matter. This has novel phenomenological implications, which we briefly discuss.  
  Address [Bas I Beneito, Arnau] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: arnau.bas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000866484800002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5380  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva