|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Measurement of electroweak Z(v (v)over-bar)gamma jj production and limits on anomalous quartic gauge couplings in pp collisions at root s=13 TeV with the ATLAS detector Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 082 - 48pp
Keywords (down) Electroweak Interaction; Hadron-Hadron Scattering
Abstract The electroweak production of Z(v (v) over bar)gamma in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton-proton collisions at a centre-of-mass energy of 13TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb(-1) collected by the ATLAS detector during the 2015-2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial Z( v (v) over bar)gamma jj cross section for electroweak production is measured to be 0.77(-0.30)(+0.34) fb and is consistent with the Standard Model prediction. Evidence of electroweak Z( v (v) over bar)gamma jj production is found with an observed significance of 3.2 sigma for the background-only hypothesis, compared with an expected significance of 3.7 sigma. The combination of this result with the previously published ATLAS observation of electroweak Z(v (v) over bar)gamma jj production yields an observed (expected) signal significance of 6.3 sigma (6.6 sigma). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.
Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001035262600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5640
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Cross-section measurements for the production of a Z boson in association with high-transverse-momentum jets in pp collisions at root s=13 TeV with the ATLAS detector Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 080 - 53pp
Keywords (down) Electroweak Interaction; Hadron-Hadron Scattering
Abstract Cross-section measurements for a Z boson produced in association with high-transverse-momentum jets ((pT) >= 100 GeV) and decaying into a charged-lepton pair (e(+) e(-), mu(+)mu(-)) are presented. The measurements are performed using proton-proton collisions at root s = 13TeV corresponding to an integrated luminosity of 139 fb(-1) collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the Z boson and the closest jet are performed in events with at least one jet with (pT) >= 500 GeV. Event topologies of particular interest are the collinear emission of a Z boson in dijet events and a boosted Z boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-nextto-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.
Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001035282400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5641
Permanent link to this record
 

 
Author Araujo Filho, A.A.
Title Thermodynamics of massless particles in curved spacetime Type Journal Article
Year 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.
Volume 12 Issue 13 Pages 2350226 - 40pp
Keywords (down) Einstein-aether; thermodynamic properties; curved spacetime
Abstract This work is devoted to study the behavior of massless particles within the context of curved spacetime. In essence, we investigate the consequences of the scale factor C(?) of the Friedmann-Robertson-Walker metric in the Einstein-aether formalism to study photon-like particles. To do so, we consider the system within the canonical ensemble formalism in order to derive the following thermodynamic state quantities: spectral radiance, Helmholtz free energy, pressure, entropy, mean energy and the heat capacity. Moreover, the correction to the Stefan-Boltzmann law and the equation of states are also provided. Particularly, we separate our study within three distinct cases, i.e. s = 0, p = 0; s = 1, p = 1; s = 2, p = 1. In the first one, the results are derived numerically. Nevertheless, for the rest of the cases, all the calculations are accomplished analytically showing explicitly the dependence of the scale factor C(?) and the Riemann zeta function ?(s). Furthermore, our analyses are accomplished in general taking into account three different regimes of temperature of the universe, i.e. the inflationary era (T = 10(13)GeV), the electroweak epoch (T = 10(3)GeV) and the cosmic microwave background (T = 10(-13)GeV).
Address [Araujo Filho, A. A.] Univ Fed Cearra UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0219-8878 ISBN Medium
Area Expedition Conference
Notes WOS:001048378900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5613
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F.; Valkenburg, W.
Title CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe Type Journal Article
Year 2023 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 283 Issue Pages 108586 - 13pp
Keywords (down) Early universe; Real-time lattice simulations; Gauge -invariant lattice techniques
Abstract This paper describes CosmoGattice, a modern package for lattice simulations of the dynamics of interacting scalar and gauge fields in an expanding universe. CosmoGattice incorporates a series of features that makes it very versatile and powerful: i) it is written in C++ fully exploiting the object oriented programming paradigm, with a modular structure and a clear separation between the physics and the technical details, ii) it is MPI-based and uses a discrete Fourier transform parallelized in multiple spatial dimensions, which makes it specially appropriate for probing scenarios with well -separated scales, running very high resolution simulations, or simply very long ones, iii) it introduces its own symbolic language, defining field variables and operations over them, so that one can introduce differential equations and operators in a manner as close as possible to the continuum, iv) it includes a library of numerical algorithms, ranging from O(delta t(2)) to O(delta t(10)) methods, suitable for simulating global and gauge theories in an expanding grid, including the case of 'self-consistent' expansion sourced by the fields themselves. Relevant observables are provided for each algorithm (e.g. energy densities, field spectra, lattice snapshots) and we note that, remarkably, all our algorithms for gauge theories (Abelian or non-Abelian) always respect the Gauss constraint to machine precision. Program summary Program Title:: CosmoGattice CPC Library link to program files: https://doi .org /10 .17632 /44vr5xssc6 .1 Developer's repository link: http://github .com /cosmolattice /cosmolattice Licensing provisions: MIT Programming language: C++, MPI Nature of problem: The phenomenology of high energy physics in the early universe is typically characterized by non-linear dynamics, which cannot be captured accurately with analytical techniques. In order to fully understand the non-linearities developed in a given scenario, one needs to carry out lattice simulations. A number of public packages for lattice simulations have appeared over the years, but most of them are only capable of simulating scalar fields. However, realistic models of particle physics do contain other kind of field species, such as (Abelian or non-Abelian) gauge fields, whose non-linear dynamics can also play a relevant role in the early universe. Tensor modes representing gravitational waves are also naturally expected in many scenarios. Solution method: CosmoGattice represents a modern code for lattice simulations of scalar-gauge field theories in an expanding universe. It allows for the simulation of the evolution of interacting (singlet) scalar fields, charged scalar fields under U(1) and/or SU(2) gauge groups, and the corresponding associated Abelian and/or non-Abelian gauge fields. From version 1.1 onward, CosmoGattice also allows to simulate the production of gravitational waves. Simulations can be done either in a flat space-time background, or in a homogeneous and isotropic (spatially flat) expanding FLRW background. CosmoGattice provides symplectic integrators, with accuracy ranging from O (delta t(2)) up to O(delta t(10)), to simuate the non-linear dynamics of the appropriate fields in comoving three-dimensional lattices. The code is parallelized with MPI, and uses a discrete Fourier Transform parallelized in multiple spatial dimensions, which makes it a very powerful code for probing physical problems with well-separated scales. Moreover, the code has been designed as a `platform' to implement any system of dynamical equations suitable for discretization on a lattice.
Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: f.torrenti@unibas.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000899506700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5451
Permanent link to this record
 

 
Author NEXT Collaboration (Byrnes, N.K. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 8 Pages P08006 - 33pp
Keywords (down) Double-beta decay detectors; Optical detector readout concepts; Particle tracking detectors (Gaseous detectors); Time projection chambers
Abstract The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.
Address [Byrnes, N. K.; Parmaksiz, I; Asaadi, J.; Baeza-Rubio, J.; Jones, B. J. P.; Mistry, K.; Moya, I. A.; Nygren, D. R.; Stogsdill, K.; Navarro, K. E.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001084390900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5764
Permanent link to this record