|   | 
Details
   web
Records
Author Fernandez-Tejero, J.; Bartl, U.; Docke, M.; Fadeyev, V.; Fleta, C.; Hacker, J.; Hommels, B.; Lacasta, C.; Parzefall, U.; Soldevila, U.; Stocker, G.; Ullan, M.; Unno, Y.
Title Design and evaluation of large area strip sensor prototypes for the ATLAS Inner Tracker detector Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 981 Issue Pages 164536 - 6pp
Keywords (down) ATLAS; Silicon strip sensors; Large area silicon sensors; Layout design; Prototype evaluation; Market survey
Abstract The ATLAS community is facing the last stages prior to the production of the upgraded silicon strip Inner Tracker for the High-Luminosity Large Hadron Collider. An extensive Market Survey was carried out in order to evaluate the capability of different foundries to fabricate large area silicon strip sensors, satisfying the ATLAS specifications. The semiconductor manufacturing company, Infineon Technologies AG, was one of the two foundries, along with Hamamatsu Photonics K.K., that reached the last stage of the evaluation for the production of the new devices. The full prototype wafer layout for the participation of Infineon, called ATLAS17LS-IFX, was designed using a newly developed Python-based Automatic Layout Generation Tool, able to rapidly design sensors with different characteristics and dimensions based on a few geometrical and technological input parameters. This work presents the layout design process and the results obtained from the evaluation of the new Infineon large area sensors before and after proton and neutron irradiations, up to fluences expected in the inner layers of the future ATLAS detector.
Address [Fernandez-Tejero, J.; Fleta, C.; Ullan, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000581799800023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4579
Permanent link to this record
 

 
Author Moles-Valls, R.
Title Alignment of the ATLAS Inner Detector with proton-proton collision data Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 650 Issue 1 Pages 235-239
Keywords (down) ATLAS; Inner detector; Tracking system; Alignment
Abstract ATLAS is a multipurpose experiment that records the products of the LHC collisions. In order to reconstruct the trajectories of the charged particles produced in these collisions. ATLAS has an internal tracking system made of silicon planar sensors (pixels and micro-strips) and drift-tube based detectors; both together, they constitute the ATLAS Inner Detector. The alignment of the ATLAS tracking system requires the determination of their almost 36,000 degrees-of-freedom (DOF) with high accuracy. Thus, the demanded precision for the alignment of the pixel and micro-strip sensors is below 10 μm. As alignment algorithms are based on the minimization of the track-hit residuals, a linear system with a large number of DOF has to be solved. The alignment results of the ATLAS tracker using data recorded during cosmic commissioning phases in 2008 and 2009 and the LHC start up run in 2009 will be presented. Moreover recent 7 TeV data collected during 2010 run have been used to study the detector performance. These studies reveal that the detector is aligned with a precision high enough to cope with the requirements.
Address [Moles-Valls, R] IFIC CSIC UV Valencia, Valencia, Spain, Email: Regina.Moles@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000295106500050 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 767
Permanent link to this record
 

 
Author ATLAS Collaboration (Abat, E. et al); Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Mitsou, V.A.; Ruiz, A.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A.
Title Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 621 Issue 1-3 Pages 134-150
Keywords (down) ATLAS; Calorimetry; Test-beam; Calibration; Simulation
Abstract A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.
Address [Abata, E.; Arik, E.; Cetin, S. A.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey, Email: atlassecretariat@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000281109100019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 389
Permanent link to this record
 

 
Author Hara, K. et al; Escobar, C.; Garcia, C.; Lacasta, C.; Miñano, M.; Soldevila, U.
Title Charge collection study with the ATLAS ITk prototype silicon strip sensors ATLAS17LS Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 983 Issue Pages 164422 - 6pp
Keywords (down) ATLAS ITk; Microstrip sensor; Charge collection; Radiation damage
Abstract The inner tracker of the ATLAS detector is scheduled to be replaced by a completely new silicon-based inner tracker (ITk) for the Phase-II of the CERN LHC (HL-LHC). The silicon strip detector covers the volume 40 < R < 100 cm in the radial and vertical bar z vertical bar <300 cm in the longitudinal directions. The silicon sensors for the detector will be fabricated using the n(+)-on-p 6-inch wafer technology, for a total of 22,000 wafers. Intensive studies were carried out on the final prototype sensors ATLAS17LS fabricated by Hamamatsu Photonics (HPK). The charge collection properties were examined using penetrating Sr-90 beta-rays and the ALIBAVA fast readout system for the miniature sensors of 1 cm xl cm in area. The samples were irradiated by protons in the 27 MeV Birmingham Cyclotron, the 70 MeV CYRIC at Tohoku University, and the 24 GeV CERN-PS, and by neutrons at Ljubljana TAIGA reactor for fluence values up to 2 x 10(15) n(eq)/cm(2). The change in the charge collection with fluence was found to be similar to the previous prototype ATLAS12, and acceptable for the ITk. Sensors with two active thicknesses, 300 μm (standard) and 240 μm (thin), were compared and the difference in the charge collection was observed to be small for bias voltages up to 500 V. Some samples were also irradiated with gamma radiation up to 2 MGy, and the full depletion voltage was found to decrease with the dose. This was caused by the Compton electrons due to the( 60)Co gamma radiation. To summarize, the design of the ATLAS17LS and technology for its fabrication have been verified for implementation in the ITk. We are in the stage of sensor pre-production with the first sensors already delivered in January of 2020.
Address [Hara, K.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan, Email: hara@hep.px.tsukuba.ac.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000581808300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4606
Permanent link to this record
 

 
Author Capra, S.; Mengoni, D.; Dueñas, J.A.; John, P.R.; Gadea, A.; Aliaga, R.J.; Dormard, J.J.; Assie, M.; Pullia, A.
Title Performance of the new integrated front-end electronics of the TRACE array commissioned with an early silicon detector prototype Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 935 Issue Pages 178-184
Keywords (down) ASIC; Charge-sensitive preamplifier; Low-noise applications; Particle spectrometry; Dead time; Silicon detector
Abstract The spectroscopic performances of the new integrated ASIC (Application-Specific Integrated Circuit) preamplifiers for highly segmented silicon detectors have been evaluated with an early silicon detector prototype of the TRacking Array for light Charged Ejectiles (TRACE). The ASICS were mounted on a custom-designed PCB (Printed Circuit Board) and the detector plugged on it. Energy resolution tests, performed on the same detector before and after irradiation, yielded a resolution of 21 keV and 33 keV FWHM respectively. The output signals were acquired with an array of commercial 100-MHz 14-bit digitizers. The preamplifier chip is equipped with an innovative Fast-Reset device that has two functions: it reduces dramatically the dead time of the preamplifier in case of saturation (from milliseconds to microseconds) and extends the spectroscopic dynamic range of the preamplifier by more than one order of magnitude. Other key points of the device are the low noise and the wide bandwidth.
Address [Capra, S.; Pullia, A.] Univ Milan, Dipartimento Fis, Via Celoria 16, IT-20133 Milan, Italy, Email: stefano.capra@unimi.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000470063800026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4042
Permanent link to this record