|   | 
Details
   web
Records
Author Helo, J.C.; Hirsch, M.; Ota, T.
Title Proton decay and light sterile neutrinos Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 047 - 15pp
Keywords (down) Beyond Standard Model; Neutrino Physics
Abstract Within the standard model, non-renormalizable operators at dimension six (d = 6) violate baryon and lepton number by one unit and thus lead to proton decay. Here, we point out that the proton decay mode with a charged pion and missing energy can be a characteristic signature of d = 6 operators containing a light sterile neutrino, if it is not accompanied by the standard pi(0)e(+) final state. We discuss this effect first at the level of effective operators and then provide a concrete model with new physics at the TeV scale, in which the lightness of the active neutrinos and the stability of the proton are related.
Address [Helo, Juan C.] Univ La Serena, Fac Ciencias, Dept Fis, Ave Cisternas 1200, La Serena, Chile, Email: jchelo@userena.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000435023100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3610
Permanent link to this record
 

 
Author Cepedello, R.; Fonseca, R.M.; Hirsch, M.
Title Systematic classification of three-loop realizations of the Weinberg operator Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 197 - 34pp
Keywords (down) Beyond Standard Model; Neutrino Physics
Abstract We study systematically the decomposition of the Weinberg operator at three-loop order. There are more than four thousand connected topologies. However, the vast majority of these are infinite corrections to lower order neutrino mass diagrams and only a very small percentage yields models for which the three-loop diagrams are the leading order contribution to the neutrino mass matrix. We identify 73 topologies that can lead to genuine three-loop models with fermions and scalars, i.e. models for which lower order diagrams are automatically absent without the need to invoke additional symmetries. The 73 genuine topologies can be divided into two sub-classes: normal genuine ones (44 cases) and special genuine topologies (29 cases). The latter are a special class of topologies, which can lead to genuine diagrams only for very specific choices of fields. The genuine topologies generate 374 diagrams in the weak basis, which can be reduced to only 30 distinct diagrams in the mass eigenstate basis. We also discuss how all the mass eigenstate diagrams can be described in terms of only five master integrals. We present some concrete models and for two of them we give numerical estimates for the typical size of neutrino masses they generate. Our results can be readily applied to construct other d = 5 neutrino mass models with three loops.
Address [Cepedello, Ricardo; Hirsch, Martin] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000449260800013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3792
Permanent link to this record
 

 
Author Anamiati, G.; Castillo-Felisola, O.; Fonseca, R.M.; Helo, J.C.; Hirsch, M.
Title High-dimensional neutrino masses Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 066 - 26pp
Keywords (down) Beyond Standard Model; Neutrino Physics
Abstract For Majorana neutrino masses the lowest dimensional operator possible is the Weinberg operator at d = 5. Here we discuss the possibility that neutrino masses originate from higher dimensional operators. Specifically, we consider all tree-level decompositions of the d = 9, d = 11 and d = 13 neutrino mass operators. With renormalizable interactions only, we find 18 topologies and 66 diagrams for d = 9, and 92 topologies plus 504 diagrams at the d = 11 level. At d = 13 there are already 576 topologies and 4199 diagrams. However, among all these there are only very few genuine neutrino mass models: At d = (9, 11, 13) we find only (2,2,2) genuine diagrams and a total of (2,2,6) models. Here, a model is considered genuine at level d if it automatically forbids lower order neutrino masses without the use of additional symmetries. We also briefly discuss how neutrino masses and angles can be easily fitted in these high-dimensional models.
Address [Anamiati, Gaetana; Hirsch, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000453296100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3845
Permanent link to this record
 

 
Author Chowdhury, D.; Eberhardt, O.
Title Update of global Two-Higgs-Doublet model fits Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 161 - 42pp
Keywords (down) Beyond Standard Model; Higgs Physics
Abstract We perform global fits of Two-Higgs-Doublet models with a softly broken Z(2) symmetry to recent results from the LHC detectors CMS and ATLAS, that is signal strengths and direct search limits obtained at root s = 8 TeV and root s = 13 TeV. We combine all available ATLAS and CMS constraints with the other relevant theoretical and experimental bounds and present the latest limits on the model parameters. We obtain that deviations from the so-called alignment limit beta-alpha = pi/2 cannot be larger than 0.03 in type I and have to be smaller than 0.02 in the remaining three types. For the latter, we also observe lower limits on the heavy Higgs masses in the global fit. The splittings between these masses cannot exceed 200 GeV in the types I and X and 130 GeV in the types II and Y. Finally, we find that the decay widths of the heavy Higgs particles cannot be larger than 7% of their masses if they are lighter than 1.5 TeV.
Address [Chowdhury, Debtosh] Ist Nazl Fis Nucl, Sez Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy, Email: Debtosh.Chowdhury@polytechnique.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000433263300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3595
Permanent link to this record
 

 
Author Chala, M.; Krause, C.; Nardini, G.
Title Signals of the electroweak phase transition at colliders and gravitational wave observatories Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 062 - 29pp
Keywords (down) Beyond Standard Model; Higgs Physics
Abstract If the electroweak phase transition (EWPT) is of strongly first order due to higher dimensional operators, the scale of new physics generating them is at the TeV scale or below. In this case the effective-field theory (EFT) neglecting operators of dimension higher than six may overlook terms that are relevant for the EWPT analysis. In this article we study the EWPT in the EFT to dimension eight. We estimate the reach of the future gravitational wave observatory LISA for probing the region in which the EWPT is strongly first order and compare it with the capabilities of the Higgs measurements via double-Higgs production at current and future colliders. We also match different UV models to the previously mentioned dimension-eight EFT and demonstrate that, from the top-down point of view, the double-Higgs production is not the best signal to explore these scenarios.
Address [Chala, Mikael] Univ Durham, Phys Dept, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: mikael.chala@durham.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000438141500014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3655
Permanent link to this record