toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Delhom, A.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J. url  doi
openurl 
  Title Metric-affine bumblebee gravity: classical aspects Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 4 Pages 287 - 10pp  
  Keywords (down)  
  Abstract We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the post-Minkowskian, weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric, and then we explore the physical properties of the VEV of the bumblebee field, focusing mainly on the dispersion relations and the stability of the resulting effective theory.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia, CSIC, Valencia 46100, Spain, Email: adria.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636839400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4779  
Permanent link to this record
 

 
Author Bombacigno, F.; Boudet, S.; Olmo, G.J.; Montani, G. url  doi
openurl 
  Title Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 12 Pages 124031  
  Keywords (down)  
  Abstract We extend the notion of the Nieh-Yan invariant to generic metric-affine geometries, where both torsion and nonmetricity are taken into account. Notably, we show that the properties of projective invariance and topologicity can be independently accommodated by a suitable choice of the parameters featuring this new Nieh-Yan term. We then consider a special class of modified theories of gravity able to promote the Immirzi parameter to a dynamical scalar field coupled to the Nieh-Yan form, and we discuss in more detail the dynamics of the effective scalar tensor theory stemming from such a revised theoretical framework. We focus, in particular, on cosmological Bianchi I models and we derive classical solutions where the initial singularity is safely removed in favor of a big bounce, which is ultimately driven by the nonminimal coupling with the Immirzi field. These solutions, moreover, turn out to be characterized by finite time singularities, but we show that such critical points do not spoil the geodesic completeness and wave regularity of these spacetimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000661819200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4870  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. url  doi
openurl 
  Title Parameterized nonrelativistic limit of stellar structure equations in Ricci-based gravity theories Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 2 Pages 024045 - 8pp  
  Keywords (down)  
  Abstract We present the nonrelativistic limit of the stellar structure equations of Ricci-based gravities, a family of metric-affine theories whose Lagrangian is built via contractions of the metric with the Ricci tensor of an a priori independent connection. We find that this limit is characterized by four parameters that arise in the expansion of several geometric quantities in powers of the stress-energy tensor of the matter fields. We discuss the relevance of this result for the phenomenology of nonrelativistic stars, such as main-sequence stars as well as several substellar objects.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000674579300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4914  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Delhom, A.; Olmo, G.J.; Orazi, E. url  doi
openurl 
  Title Born-Infeld gravity: Constraints from light-by-light scattering and an effective field theory perspective Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 820 Issue Pages 136479 - 6pp  
  Keywords (down)  
  Abstract By using a novel technique that establishes a correspondence between general relativity and metric-affine theories based on the Ricci tensor, we are able to set stringent constraints on the free parameter of Born-Infeld gravity from the ones recently obtained for Born-Infeld electrodynamics by using light-by light scattering data from ATLAS. We also discuss how these gravity theories plus matter fit within an effective field theory framework.  
  Address [Beltran Jimenez, Jose] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000701707400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4978  
Permanent link to this record
 

 
Author Rosa, J.L.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Weak-field regime of the generalized hybrid metric-Palatini gravity Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 12 Pages 124030 - 11pp  
  Keywords (down)  
  Abstract In this work we explore the dynamics of the generalized hybrid metric-Palatini theory of gravity in the weak-field, slow-motion regime. We start by introducing the equivalent scalar-tensor representation of the theory, which contains two scalar degrees of freedom, and perform a conformal transformation to the Einstein frame. Linear perturbations of the metric in a Minkowskian background are then studied for the metric and both scalar fields. The effective Newton constant and the PPN parameter. of the theory are extracted after transforming back to the (original) Jordan frame. Two particular cases where the general method ceases to be applicable are approached separately. A comparison of these results with observational constraints is then used to impose bounds on the masses and coupling constants of the scalar fields.  
  Address [Rosa, Joao Luis] Univ Tartu, Inst Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia, Email: joaoluis92@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762071800011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5142  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva