|   | 
Details
   web
Records
Author Rocha-Moran, P.; Vicente, A.
Title Lepton Flavor Violation in the singlet-triplet scotogenic model Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 078 - 25pp
Keywords (up) Neutrino Physics; Beyond Standard Model
Abstract We investigate lepton flavor violation (LFV) in the the singlet-triplet scotogenic model in which neutrinos acquire non-zero masses at the 1-loop level. In contrast to the most popular variant of this setup, the singlet scotogenic model, this version includes a triplet fermion as well as a triplet scalar, leading to a scenario with a richer dark matter phenomenology. Taking into account results from neutrino oscillation experiments, we explore some aspects of the LFV phenomenology of the model. In particular, we study the relative weight of the dipole operators with respect to other contributions to the LFV amplitudes and determine the most constraining observables. We show that in large portions of the parameter space, the most promising experimental perspectives are found for LFV 3-body decays and for coherent mu-e conversion in nuclei.
Address [Rocha-Moran, Paulina; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Apdo 22085, E-46071 Valencia, Spain, Email: procha@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000411315600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3500
Permanent link to this record
 

 
Author Thakore, T.; Devi, M.M.; Agarwalla, S.K.; Dighe, A.
Title Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 022 - 34pp
Keywords (up) Neutrino Physics; Beyond Standard Model
Abstract We perform a detailed analysis for the prospects of detecting active-sterile oscillations involving a light sterile neutrino, over a large Delta m(41)(2 )range of 10(-5) eV(2) to 10(2) eV(2), using 10 years of atmospheric neutrino data expected from the proposed 50 kt magnetized ICAL detector at the INO. This detector can observe the atmospheric nu(mu), and (nu) over bar (mu) separately over a wide range of energies and baselines, making it sensitive to the magnitude and sign of Arni i over a large range. If there is no light sterile neutrino, ICAL can place competitive upper limit on vertical bar U-mu 4 vertical bar(2) less than or similar to 0.02 at 90% C.L. for Delta m(41)(2) in the range (0.5-5) x 10(-3) eV(2). For the same vertical bar Delta m(41)(2)vertical bar range, ICAL would be able to determine its sign, exploiting the Earth's matter effect in mu(-) and mu(+) events separately if there is indeed a light sterile neutrino in Nature. This would help identify the neutrino mass ordering in the four-neutrino mixing scenario.
Address [Thakore, Tarak] Louisiana State Univ, Baton Rouge, LA 70803 USA, Email: tarak.thakore@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000441224700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3691
Permanent link to this record
 

 
Author Biggio, C.; Fernandez-Martinez, E.; Filaci, M.; Hernandez-Garcia, J.; Lopez-Pavon, J.
Title Global bounds on the Type-III Seesaw Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 022 - 33pp
Keywords (up) Neutrino Physics; Beyond Standard Model
Abstract We derive general bounds on the Type-III Seesaw parameters from a global fit to flavor and electroweak precision data. We explore and compare three Type-III Seesaw realizations: a general scenario, where an arbitrary number of heavy triplets is integrated out without any further assumption, and the more constrained cases in which only 3 or 2 (minimal scenario) additional heavy states are included. The latter assumption implies rather non-trivial correlations in the Yukawa flavor structure of the model so as to reproduce the neutrino masses and mixings as measured in neutrino oscillations experiments and thus qualitative differences can be found with the more general scenario. In particular, we find that, while the bounds on most elements of the dimension 6 operator coefficients are of order 10(-4) for the general and 3-triplet cases, the 2-triplet scenario is more strongly constrained with bounds between 10(-5) and 10(-7) for the different flavours. We also discuss how these correlations affect the present CMS constraints on the Type-III Seesaw in the minimal 2-triplet scenario.
Address [Biggio, Carla; Filaci, Manuele] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: carla.biggio@ge.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000533907600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4400
Permanent link to this record
 

 
Author de Gouvea, A.; De Romeri, V.; Ternes, C.A.
Title Probing neutrino quantum decoherence at reactor experiments Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 049 - 17pp
Keywords (up) Neutrino Physics; Beyond Standard Model
Abstract We explore how well reactor antineutrino experiments can constrain or measure the loss of quantum coherence in neutrino oscillations. We assume that decoherence effects are encoded in the size of the neutrino wave-packet, sigma. We find that the current experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) already constrain sigma >1.0x10(-4) nm and estimate that future data from the Jiangmen Underground Neutrino Observatory (JUNO) would be sensitive to sigma <2.1x10(-3) nm. If the effects of loss of coherence are within the sensitivity of JUNO, we expect sigma to be measured with good precision. The discovery of nontrivial decoherence effects in JUNO would indicate that our understanding of the coherence of neutrino sources is, at least, incomplete.
Address [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA, Email: degouvea@northwestern.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000561756000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4501
Permanent link to this record
 

 
Author de Gouvea, A.; De Romeri, V.; Ternes, C.A.
Title Combined analysis of neutrino decoherence at reactor experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 042 - 12pp
Keywords (up) Neutrino Physics; Beyond Standard Model
Abstract Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We combine data from the short-baseline experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) and from the long baseline reactor experiment KamLAND to obtain the best current limit on the reactor antineutrino wave-packet width, sigma > 2.1 x 10(-4) nm at 90% CL. We also find that the determination of standard oscillation parameters is robust, i.e., it is mostly insensitive to the presence of hypothetical decoherence effects once one combines the results of the different reactor neutrino experiments.
Address [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA, Email: degouvea@northwestern.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000762304800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5150
Permanent link to this record