|   | 
Details
   web
Records
Author Vento, V.
Title Skyrmions at high density Type Journal Article
Year 2018 Publication Physics of Particles and Nuclei Letters Abbreviated Journal Phys. Part. Nuclei Lett.
Volume 15 Issue 4 Pages 367-370
Keywords (down) quark; pion; skyrmion; dilation
Abstract The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark gluon plasma. We describe its formulation in terms of Skyrme crystals and justify the origin of the quarkyonic phase transition in a chiral-quark model.
Address [Vento, V.] Univ Valencia, CSIC, Dept Fis Teor IFIC, E-46100 Burjassot, Valencia, Spain, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Pleiades Publishing Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1547-4771 ISBN Medium
Area Expedition Conference
Notes WOS:000437770100006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3651
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, R.
Title A plausible explanation of Upsilon(10860) Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 791 Issue Pages 409-413
Keywords (down) Quark; Meson; Potential
Abstract We show that a good description of the Upsilon(10860) properties, in particular the mass, the e(+) e(-) leptonic widths and the pi(+) pi(-) Upsilon(ns) (n = 1, 2, 3) production rates, can be obtained under the assumption that Upsilon(10860) is a mixing of the conventional Upsilon(5s) quark model state with the lowest P-wave hybrid state.
Address [Bruschini, R.; Gonzalez, R.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Carrer Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000462321800059 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3959
Permanent link to this record
 

 
Author Lopez-Ibañez, M.L.; Melis, A.; Jay Perez, M.; Vives, O.
Title Slepton non-universality in the flavor-effective MSSM Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 162 - 27pp
Keywords (down) Quark Masses and SM Parameters; Supersymmetric Standard Model; Super-symmetry Breaking; Supersymmetric Effective Theories
Abstract Supersymmetric theories supplemented by an underlying flavor-symmetry G(f) provide a rich playground for model building aimed at explaining the flavor structure of the Standard Model. In the case where supersymmetry breaking is mediated by gravity, the soft-breaking Lagrangian typically exhibits large tree-level flavor violating e ff ects, even if it stems from an ultraviolet flavor-conserving origin. Building on previous work, we continue our phenomenological analysis of these models with a particular emphasis on leptonicflavor observables. We consider three representative models which aim to explain the flavor structure of the lepton sector, with symmetry groups G(f) = Delta (27), A(4); and S-3.
Address [Luisa Lopez-Ibanez, M.; Melis, Aurora; Jay Perez, M.; Vives, Oscar] Univ Valencia, Dept Fis Teor, Dr Moliner 50, Burjassot, Valencia, Spain, Email: m.luisa.lopez-ibanez@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000416356500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3382
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A.; Roldan, E.
Title Bright and dark solitons in a photonic nonlinear quantum walk: lessons from the continuum Type Journal Article
Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 26 Issue 2 Pages 023004 - 16pp
Keywords (down) quantum walks; soliton; non-linear optics
Abstract We propose a nonlinear quantum walk model inspired in a photonic implementation in which the polarization state of the light field plays the role of the coin-qubit. In particular, we take profit of the nonlinear polarization rotation occurring in optical media with Kerr nonlinearity, which allows to implement a nonlinear coin operator, one that depends on the state of the coin-qubit. We consider the space-time continuum limit of the evolution equation, which takes the form of a nonlinear Dirac equation. The analysis of this continuum limit allows us to gain some insight into the existence of different solitonic structures, such as bright and dark solitons. We illustrate several properties of these solitons with numerical calculations, including the effect on them of an additional phase simulating an external electric field.
Address [Angles-Castillo, Andreu; Perez, Armando] Univ Valencia, Dept Fis Teor & IFIC, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.angles-castillo@uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001156767400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5929
Permanent link to this record
 

 
Author Jay, G.; Arnault, P.; Debbasch, F.
Title Dirac quantum walks with conserved angular momentum Type Journal Article
Year 2021 Publication Quantum Studies-Mathematics and Foundations Abbreviated Journal Quantum Stud. Math. Found.
Volume 8 Issue Pages 419-430
Keywords (down) Quantum walks; Quantum simulation; Lattice field theory
Abstract A quantum walk (QW) simulating the flat (1+2)D Dirac equation on a spatial polar grid is constructed. Because fermions are represented by spinors, which do not constitute a representation of the rotation group SO(3), but rather of its double cover SU(2), the QW can only be defined globally on an extended spacetime where the polar angle extends from 0 to 4 pi. The coupling of the QW with arbitrary electromagnetic fields is also presented. Finally, the cylindrical relativistic Landau levels of the Dirac equation are computed explicitly and simulated by the QW.
Address [Jay, Gareth] Univ Western Australia, Phys Dept, Perth, WA 6009, Australia, Email: gareth.jay@uwa.edu.au;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-5609 ISBN Medium
Area Expedition Conference
Notes WOS:000697709700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4975
Permanent link to this record