toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Durieux, G.; Irles, A.; Miralles, V.; Peñuelas, A.; Perello, M.; Poschl, R.; Vos, M. url  doi
openurl 
  Title The electro-weak couplings of the top and bottom quarks – Global fit and future prospects Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 098 - 44pp  
  Keywords (down) Phenomenology of Field Theories in Higher Dimensions  
  Abstract We evaluate the implications of LHC and LEP/SLC measurements for the electro-weak couplings of the top and bottom quarks. We derive global bounds on the Wilson coefficients of ten two-fermion operators in an effective field theory description. The combination of hadron collider data with Z -pole measurements is found to yield tight limits on the operator coefficients that modify the left-handed couplings of the bottom and top quark to the Z boson. We also present projections for the high-luminosity phase of the LHC and for future electron-positron colliders. The bounds on the operator coefficients are expected to improve substantially during the remaining LHC programme, by factors of 1 to 5 if systematic uncertainties are scaled as statistical ones. The operation of an e(+)e(-) collider at a center-of-mass energy above the top-quark pair production threshold is expected to further improve the bounds by one to two orders of magnitude. The combination of measurements in pp and e(+)e(-) collisions allows for a percent-level determination of the top-quark Yukawa coupling, that is robust in a global fit.  
  Address [Durieux, Gauthier] Technion Israel Inst Technol, Dept Phys, IL-3200003 Haifa, Israel, Email: durieux@campus.technion.ac.il;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513489700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4280  
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed Standard Model Type Journal Article
  Year 2019 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 34 Issue 25 Pages 1950140 - 27pp  
  Keywords (down) Phenomenology beyond the Standard Model; lepton anomalous magnetic; moments Atomki anomaly  
  Abstract The framed Standard Model (FSM) predicts a 0(+) boson with mass around 20 MeV in the “hidden sector,” which mixes at tree level with the standard Higgs hW and hence acquires small couplings to quarks and leptons which can be calculated in the FSM apart from the mixing parameter rho Uh. The exchange of this mixed state U will contribute to g – 2 and to the Lamb shift. By adjusting rho Uh alone, it is found that the FSM can satisfy all present experimental bounds on the g – 2 and Lamb shift anomalies for μand e, and for the latter for both hydrogen and deuterium. The FSM predicts also a 1(-) boson in the “hidden sector” with a mass of 17 MeV, that is, right on top of the Atomki anomaly X. This mixes with the photon at 1-loop level and couples thereby like a dark photon to quarks and leptons. It is however a compound state and is thought likely to possess additional compound couplings to hadrons. By adjusting the mixing parameter and the X's compound coupling to nucleons, the FSM can reproduce the production rate of the X in beryllium decay as well as satisfy all the bounds on X listed so far in the literature. The above two results are consistent in that the U, being 0(+), does not contribute to the Atomki anomaly if parity and angular momentum are conserved, while X, though contributing to g – 2 and Lamb shift, has smaller couplings than U and can, at first instance, be neglected there. Thus, despite the tentative nature of the three anomalies in experiment on the one hand and of the FSM as theory on the other, the accommodation of the former in the latter has strengthened the credibility of both. Indeed, if this FSM interpretation were correct, it would change the whole aspect of the anomalies from just curiosities to windows into a vast hitherto hidden sector comprising at least in part the dark matter which makes up the bulk of our universe.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000485680700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4142  
Permanent link to this record
 

 
Author Bandyopadhyay, P.; Chun, E.J.; Mandal, R. url  doi
openurl 
  Title Phenomenology of Higgs bosons in inverse seesaw model with Type-X two Higgs doublet at the LHC Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 169 - 22pp  
  Keywords (down) Phenomenological Models  
  Abstract Type-X two Higgs doublet model is known to explain the muon g – 2 anomaly with a relatively light charged Higgs boson at large tan beta. The light charged Higgs boson has been searched in the main tau nu mode at the colliders. Invoking a scenario of inverse seesaw as the origin of neutrino masses and mixing, the charged Higgs boson can decay additionally to right-handed neutrinos which leads to interesting phenomenology. Considering generic lepton flavour violating signatures at the final states, a 5 sigma discovery can be achieved with the early data of LHC, at 14 TeV, for relatively large inverse seesaw Yukawa coupling Y-N. The very light pseudoscalar and charged Higgs boson mass reconstruction are performed using the new modes and the results look promising. The inverse seesaw Yukawa coupling is shown to be probed down to Y-N similar to 0.2 at HL LHC with 3000 fb(-1).  
  Address [Bandyopadhyay, Priyotosh] Indian Inst Technol Hyderabad, Sangareddy 502287, Telengana, India, Email: bpriyo@iith.ac.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483916900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4136  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the electron reconstruction efficiency at LHCb Type Journal Article
  Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P11023 - 20pp  
  Keywords (down) Pattern recognition, cluster finding, calibration and fitting methods; Performance of High Energy Physics Detectors  
  Abstract The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb(-1) of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+ -> J/psi (e(+)e(-))K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%.  
  Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Soares Lavra, L.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: laurent.dufour@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000507589800023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4253  
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J. url  doi
openurl 
  Title Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
  Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 46 Issue 4 Pages 045001 - 155pp  
  Keywords (down) particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics  
  Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.  
  Address [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460153900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3930  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva