toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cai, Y.; Herrero-Garcia, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R. url  doi
openurl 
  Title From the Trees to the Forest: A Review of Radiative Neutrino Mass Models Type Journal Article
  Year 2017 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 5 Issue Pages 63 - 56pp  
  Keywords (up) neutrino masses; lepton flavor violation; lepton number violation; beyond the standard model; effective field theory; model building; LHC; dark matter  
  Abstract A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.  
  Address [Cai, Yi] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China, Email: juan.herrero-garcia@coepp.org.au;  
  Corporate Author Thesis  
  Publisher Frontiers Research Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416908800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3393  
Permanent link to this record
 

 
Author Abdullahi, A.M. et al; Lopez-Pavon, J. url  doi
openurl 
  Title The present and future status of heavy neutral leptons Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 2 Pages 020501 - 100pp  
  Keywords (up) Neutrinos; beyond the standard model; sterile neutrinos  
  Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.  
  Address [Abdullahi, Asli M.; Plestid, Ryan] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA, Email: shoemaker@vt.edu  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000918351600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5486  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title Unified FSM treatment of CP physics extended to hidden sector giving (i) delta(CP) for leptons as prediction, (ii) new hints on the material content of the universe Type Journal Article
  Year 2021 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 36 Issue Pages 2150238 - 19pp  
  Keywords (up) Phenomenology beyond the Standard Model; framed Standard Model; CP physics; dark matter  
  Abstract A unified treatment of CP physics for quarks and leptons in the framed Standard Model (FSM) is extended to include the predicted hidden sector giving as consequences: (i) that an earlier part estimate of the Jarlskog invariant J' for leptons is turned into a prediction for its actual value, i.e. J' similar to -0.012 (delta(CP)' similar to 1.11 pi), which is of the right order of magnitude, of the right sign, and in the range of values favoured by the present experiment, (ii) some novel twists to the effects of CP-violation on the material content of the universe.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000732963000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5059  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title delta(CP) for leptons and a new take on CP physics with the FSM Type Journal Article
  Year 2021 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 36 Issue Pages 2150236 - 22pp  
  Keywords (up) Phenomenology beyond the Standard Model; framed Standard Model; leptonic CP violation; CP physics  
  Abstract A bonus of the framed Standard Model (FSM), constructed initially to explain the mass and mixing patterns of quarks and leptons, is a solution (without axions) of the strong CP problem by cancelling the theta-angle term theta(I) Tr(H-mu v H-mu v*) in coloura by a chiral transformation on a quark zero mode which is inherent in FSM, and produces thereby a CP-violating phase in the CKM matrix similar in size to what is observed.' Extending here to flavour, one finds that there are two terms proportional to Tr(G(mu v) G(mu v)*): (a) in the action from flavour instantons with unknown coefficient, say theta(I)', (b) induced by the above FSM solution to the strong CP-problem with therefore known coefficient theta(C)'. Both terms can be cancelled in the FSM by a chiral transformation on the lepton zero mode to give a Jarlskog invariant J' in the PMNS matrix for leptons of order 10(-2), as is hinted by the experiment. But if, as suggested in Ref. 2, the term theta(I)' is to be cancelled by a chiral transformation in the predicted hidden sector to solve the strong CP problem therein, leaving only the term theta(C)' to be cancelled by the chiral transformation on leptons, then the following prediction results: J' similar to -0.012 (delta(CP)'similar to (1.11)pi) which is (i) of the right order, (ii) of the right sign and (iii) in the range favoured by the present experiment. Together with the earlier result for quarks, this offers an attractive unified treatment of all known CP physics.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000732963000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5058  
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed Standard Model Type Journal Article
  Year 2019 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 34 Issue 25 Pages 1950140 - 27pp  
  Keywords (up) Phenomenology beyond the Standard Model; lepton anomalous magnetic; moments Atomki anomaly  
  Abstract The framed Standard Model (FSM) predicts a 0(+) boson with mass around 20 MeV in the “hidden sector,” which mixes at tree level with the standard Higgs hW and hence acquires small couplings to quarks and leptons which can be calculated in the FSM apart from the mixing parameter rho Uh. The exchange of this mixed state U will contribute to g – 2 and to the Lamb shift. By adjusting rho Uh alone, it is found that the FSM can satisfy all present experimental bounds on the g – 2 and Lamb shift anomalies for μand e, and for the latter for both hydrogen and deuterium. The FSM predicts also a 1(-) boson in the “hidden sector” with a mass of 17 MeV, that is, right on top of the Atomki anomaly X. This mixes with the photon at 1-loop level and couples thereby like a dark photon to quarks and leptons. It is however a compound state and is thought likely to possess additional compound couplings to hadrons. By adjusting the mixing parameter and the X's compound coupling to nucleons, the FSM can reproduce the production rate of the X in beryllium decay as well as satisfy all the bounds on X listed so far in the literature. The above two results are consistent in that the U, being 0(+), does not contribute to the Atomki anomaly if parity and angular momentum are conserved, while X, though contributing to g – 2 and Lamb shift, has smaller couplings than U and can, at first instance, be neglected there. Thus, despite the tentative nature of the three anomalies in experiment on the one hand and of the FSM as theory on the other, the accommodation of the former in the latter has strengthened the credibility of both. Indeed, if this FSM interpretation were correct, it would change the whole aspect of the anomalies from just curiosities to windows into a vast hitherto hidden sector comprising at least in part the dark matter which makes up the bulk of our universe.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000485680700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4142  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva