toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Rotating black holes in Eddington-inspired Born-Infeld gravity: an exact solution Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 058 - 31pp  
  Keywords (down) modified gravity; GR black holes; Wormholes  
  Abstract We find an exact, rotating charged black hole solution within Eddington-inspired Born-Infeld gravity. To this end we employ a recently developed correspondence or mapping between modified gravity models built as scalars out of contractions of the metric with the Ricci tensor, and formulated in metric-affine spaces (Ricci-Based Gravity theories) and General Relativity. This way, starting from the Kerr-Newman solution, we show that this mapping bring us the axisymmetric solutions of Eddington-inspired Born-Infeld gravity coupled to a certain model of non-linear electrodynamics. We discuss the most relevant physical features of the solutions obtained this way, both in the spherically symmetric limit and in the fully rotating regime. Moreover, we further elaborate on the potential impact of this important technical progress for bringing closer the predictions of modified gravity with the astrophysical observations of compact objects and gravitational wave astronomy.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609085900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4682  
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Charged BTZ-type solutions in Eddington-inspired Born-Infeld gravity Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 025 - 23pp  
  Keywords (down) modified gravity; Exact solutions; black holes and black hole thermodynamics in GR and beyond; Wormholes  
  Abstract We construct an axially symmetric solution of Eddington-inspired Born-Infeld gravity coupled to an electromagnetic field in 2 + 1 dimensions including a (negative) cosmological constant term. This is achieved by using a recently developed mapping procedure that allows to generate solutions in certain families of metric-affine gravity theories starting from a known seed solution of General Relativity, which in the present case corresponds to the electrically charged Banados-Teitelboim-Zanelli (BTZ) solution. We discuss the main features of the new configurations, including the modifications to the ergospheres and horizons, the emergence of wormhole structures, and the consequences for the regularity (or not) of these space-times via geodesic completeness.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, Plaza Ciencias S-N, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000727716400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5050  
Permanent link to this record
 

 
Author Sepehri, A.; Pincak, R.; Olmo, G.J. doi  openurl
  Title M-theory, graphene-branes and superconducting wormholes Type Journal Article
  Year 2017 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 14 Issue 11 Pages 1750167 - 32pp  
  Keywords (down) M-theory; wormholes; graphene; superconductors  
  Abstract Exploiting an M-brane system whose structure and symmetries are inspired by those of graphene (what we call a graphene-brane), we propose here a similitude between two layers of graphene joined by a nanotube and wormholes scenarios in the brane world. By using the symmetries and mathematical properties of the M-brane system, we show here how to possibly increase its conductivity, to the point of making it as a superconductor. The questions of whether and under which condition this might point to the corresponding real graphene structures becoming superconducting are briefly outlined.  
  Address [Sepehri, Alireza] Shahid Bahonar Univ, Fac Phys, POB 76175, Kerman, Iran, Email: alireza.sepehri@uk.ac.ir;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413442500018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3334  
Permanent link to this record
 

 
Author Magalhaes, R.B.; Ribeiro, G.P.; Lima, H.C.D.J.; Olmo, G.J.; Crispino, L.C.B. url  doi
openurl 
  Title Singular space-times with bounded algebraic curvature scalars Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 114 - 34pp  
  Keywords (down) gravity; modified gravity; Wormholes  
  Abstract We show that the absence of unbounded algebraic curvature invariants constructed from polynomials of the Riemann tensor cannot guarantee the absence of strong singularities. As a consequence, it is not sufficient to rely solely on the analysis of such scalars to assess the regularity of a given space-time. This conclusion follows from the analysis of incomplete geodesics within the internal region of asymmetric wormholes supported by scalar matter which arise in two distinct metric-affine gravity theories. These wormholes have bounded algebraic curvature scalars everywhere, which highlights that their finiteness does not prevent the emergence of pathologies (singularities) in the geodesic structure of space-time. By analyzing the tidal forces in the internal wormhole region, we find that the angular components are unbounded along incomplete radial time-like geodesics. The strength of the singularity is determined by the evolution of Jacobi fields along such geodesics, finding that it is of strong type, as volume elements are torn apart as the singularity is approached. Lastly, and for completeness, we consider the wormhole of the quadratic Palatini theory and present an analysis of the tidal forces in the entire space-time.  
  Address [Magalhaes, Renan B.; Ribeiro, Gabriel P.; Lima Jr, Haroldo C. D.; Crispino, Luis C. B.] Univ Fed Para, Programa Posgrad Fis, BR-66075110 Belem, Para, Brazil, Email: renan.magalhaes@icen.ufpa.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001265908300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6200  
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Shadows and optical appearance of black bounces illuminated by a thin accretion disk Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 036 - 19pp  
  Keywords (down) GR black holes; Wormholes; modified gravity; accretion  
  Abstract We study the light rings and shadows of an uniparametric family of spherically symmetric geometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We consider the ray-tracing method in order to study the impact parameter regions corresponding to the direct, lensed, and photon ring emissions, finding a broadening of all these regions for black bounce solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of black bounces when illuminated by three standard toy models of optically and geometrically thin accretion disks viewed in face-on orientation.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000686656000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4943  
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity Type Journal Article
  Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 34 Issue 4 Pages 045006 - 21pp  
  Keywords (down) Born-Infeld gravity; BTZ; wormholes; nonsingular solutions; geodesic completeness  
  Abstract We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.  
  Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000395398800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3013  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva