toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rinaldi, M.; Vento, V. url  doi
openurl 
  Title Scalar spectrum in a graviton soft wall model Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 12 Pages 125003 - 16pp  
  Keywords (down) glueball; meson; spectrum; AdS; CFT  
  Abstract In this study we present a unified phenomenological analysis of the scalar glueball and scalar meson spectra within an AdS/QCD framework in the bottom up approach. For this purpose we generalize the recently developed graviton soft-wall (GSW) model, which has shown an excellent agreement with the lattice QCD glueball spectrum, to a description of glueballs and mesons with a unique energy scale. In this scheme, dilatonic effects, are incorporated in the metric as a deformation of the AdS space. We apply the model also to the heavy meson spectra with success. We obtain quadratic mass equations for all scalar mesons while the glueballs satisfy an almost linear mass equation. Besides their spectra, we also discuss the mixing of scalar glueball and light scalar meson states within a unified framework: the GSW model. To this aim, the light-front (LF) holographic approach, which connects the mode functions of AdS/QCD to the LF wave functions, is applied. This relation provides the probabilistic interpretation required to properly investigate the mixing conditions.  
  Address [Rinaldi, Matteo] Univ Perugia, INFN, Dipartimento Fis & Geol, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000584306700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4587  
Permanent link to this record
 

 
Author Fanchiotti, H.; Garcia Canal, C.A.; Mayosky, M.; Veiga, A.; Vento, V. doi  openurl
  Title The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems Type Journal Article
  Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.  
  Volume 53 Issue 6 Pages 143 - 11pp  
  Keywords (down) Geometrical phases; Decomplexification; Resonat circuit; Gyrator  
  Abstract The decomplexification procedure allows one to show mathematically (stricto sensu) the equivalence (isomorphism) between the quantum dynamics of a system with a finite number of basis states and a classical dynamics system. This unique way of connecting different dynamics was used in the past to analyze the relationship between the well-known geometric phase present in the quantum evolution discovered by Berry and its generalizations, with their analogs, the Hannay phases, in the classical domain. In here, this analysis is carried out for several quantum hermitian and non-hermitian PT-symmetric Hamiltonians and compared with the Hannay phase analysis in their classical isomorphic equivalent systems. As the equivalence ends in the classical domain with oscillator dynamics, we exploit the analogy to propose resonant electric circuits coupled with a gyrator, to reproduce the geometric phase coming from the theoretical solutions, in simulated laboratory experiments.  
  Address [Fanchiotti, H.; Canal, C. A. Garcia] Univ Nacl La Plata, FLP CONICET, RA-1900 La Plata, Argentina, Email: vicente.vento@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0103-9733 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001058597300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5627  
Permanent link to this record
 

 
Author Ayala, C.; Gonzalez, P.; Vento, V. url  doi
openurl 
  Title Heavy quark potential from QCD-related effective coupling Type Journal Article
  Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 43 Issue 12 Pages 125002 - 12pp  
  Keywords (down) general properties of QCD; potential models; other non-perturbative calculations; heavy quarkonia  
  Abstract We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.  
  Address [Gonzalez, Pedro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Pedro.Gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388219700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2870  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; King, M.; Mitsou, V.A.; Vento, V.; Vives, O. url  doi
openurl 
  Title Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 067 - 25pp  
  Keywords (down) Exotics; Hadron-Hadron scattering (experiments); Particle and resonance production  
  Abstract The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area similar to 18 m(2), sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb(-1). No magnetic charge exceeding 0.5g(D) (where g(D) is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV <= m <= 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g(D) <= vertical bar g vertical bar <= 6g(D), and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g(D) <= vertical bar g vertical bar <= 4g(D). Under the assumption of Drell-Yan cross sections, mass limits are derived for vertical bar g vertical bar = 2g(D) and vertical bar g vertical bar = 3g(D) for the first time at the LHC, surpassing the results from previous collider experiments.  
  Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: philippe.mermod@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000391754500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2927  
Permanent link to this record
 

 
Author Rinaldi, M.; Scopetta, S.; Traini, M.; Vento, V. url  doi
openurl 
  Title Correlations in double parton distributions: perturbative and non-perturbative effects Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 063 - 36pp  
  Keywords (down) Deep Inelastic Scattering (Phenomenology); Phenomenological Models  
  Abstract The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincare covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.  
  Address [Rinaldi, Matteo; Scopetta, Sergio] Univ Perugia, Dipartimento Fis & Geol, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386670400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2847  
Permanent link to this record
 

 
Author Noguera, S.; Vento, V. url  doi
openurl 
  Title The pion transition form factor and the pion distribution amplitude Type Journal Article
  Year 2010 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 46 Issue 2 Pages 197-205  
  Keywords (down)  
  Abstract Recent BaBar data on the pion transition form factor, whose Q(2)-dependence is much steeper then predicted by asymptotic Quantum Chromodynamics (QCD), have caused a renewed interest in its theoretical description. We present here a formalism based on a model-independent description for low photon virtuality and a high photon virtuality description based on QCD, which match at a scale Q(0). The high photon virtuality description incorporates a flat pion distribution amplitude, phi(x) = 1, at the matching scale Q(0) and QCD evolution from Q(0) to Q > Q(0). The flat pion distribution is connected, through soft pion theorems and chiral symmetry, to the pion valence parton distribution at the same low scale Q(0). The procedure leads to a good description of the data, and by incorporating additional twist-three effects, to an excellent description of the data.  
  Address [Noguera, S.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Valencia, Spain, Email: Santiago.Noguera@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284869600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 312  
Permanent link to this record
 

 
Author Kiesewetter, S.; Vento, V. url  doi
openurl 
  Title eta-eta '-glueball mixing Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 3 Pages 034003 - 13pp  
  Keywords (down)  
  Abstract We have revisited glueball mixing with the pseudoscalar mesons in the MIT bag model scheme. The calculation has been performed in the spherical cavity approximation to the bag using two different fermion propagators, the cavity and the free propagators. We obtain probabilities of mixing for the eta at the level of 0.006%-2.0%, while for the eta' one at the level of 0.6%-40%, depending on the choice of bag radius and, therefore, of the strong coupling constant. Our results differ from previous calculations. The origin of our difference stems from the treatment of the time integrations. The comparison of our calculation with experimental data, which is consistent with small eta – eta' – G mixing, implies that the pseudoscalar glueball is small, R similar to 0.5-0.6 fm and has a large mass, M-G similar to 2000-2500 MeV.  
  Address [Kiesewetter, Simon] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280611800007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 399  
Permanent link to this record
 

 
Author Mathieu, V.; Vento, V. url  doi
openurl 
  Title Pseudoscalar glueball and eta-eta ' mixing Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 3 Pages 034004 - 12pp  
  Keywords (down)  
  Abstract We have performed a dynamical analysis of the mixing in the pseudoscalar channel with the goal of understanding the existence and behavior of the pseudoscalar glueball. Our philosophy has not been to predict precise values of the glueball mass but to exploit an adequate effective theory to the point of breaking and to analyze which kind of mechanisms restore compatibility with data. Our study has led to analytical solutions which allow a clear understanding of the phenomena. The outcome of our calculation leads to a large mass glueball M-Theta > 2000 MeV, to a large glue content of the eta ', and to mixing angles in agreement with previous numerical studies.  
  Address [Mathieu, Vincent] Univ Mons, Serv Phys Nucl & Subnucl, Acad Univ Wallonie Bruxells, B-7000 Mons, Belgium, Email: vincent.mathieu@umons.ac.be  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275069000025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 494  
Permanent link to this record
 

 
Author Kochelev, N.I.; Vento, V. url  doi
openurl 
  Title Gluonic components of the pion and the transition form factor gamma*gamma* -> pi(0) Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 3 Pages 034009 - 5pp  
  Keywords (down)  
  Abstract We propose an effective Lagrangian for the coupling of the neutral pion with gluons whose strength is determined by a low-energy theorem. We calculate the contribution of the gluonic components arising from this interaction to the pion transition form factor gamma*gamma* -> pi(0) using the instanton liquid model to describe the quantum chromodynamics vacuum. We find that this contribution is large and might explain the anomalous behavior of the form factor at large virtuality of one of the photons, a feature which was recently discovered by the BABAR Collaboration.  
  Address [Kochelev, N. I.] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia, Email: kochelev@theor.jinr.ru  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275069000030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 495  
Permanent link to this record
 

 
Author Courtoy, A.; Scopetta, S.; Vento, V. url  doi
openurl 
  Title Non-perturbative momentum dependence of the coupling constant and hadronic models Type Journal Article
  Year 2011 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 47 Issue 4 Pages 49 - 7pp  
  Keywords (down)  
  Abstract Models of hadron structure are associated with a hadronic scale which allows by perturbative evolution to calculate observables in the deep inelastic region. The resolution of Dyson-Schwinger equations leads to the freezing of the QCD running coupling (effective charge) in the infrared, which is best understood as a dynamical generation of a gluon mass function, giving rise to a momentum dependence which is free from infrared divergences. We use this new development to understand why perturbative treatments are working reasonably well despite the smallness of the hadronic scale.  
  Address [Courtoy, A.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy, Email: Aurore.Courtoy@pv.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291659500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 657  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva