toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bertone, G.; Calore, F.; Caron, S.; Ruiz de Austri, R.; Kim, J.S.; Trotta, R.; Weniger, C. url  doi
openurl 
  Title Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 037 - 20pp  
  Keywords (up) dark matter detectors; dark matter theory; gamma ray experiments; supersymmetry and cosmology  
  Abstract We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that complies with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma rays from the Galactic centre observed by the Fermi Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass similar to 80 – 100 GeV annihilating into WW with a branching ratio of 95%; the second to heavier neutralinos, with mass similar to 180 – 200 GeV annihilating into (l) over barl with a branching ratio of 87%. We show that neutralinos compatible with the Galactic centre GeV excess will soon be within the reach of LHC run-II – notably through searches for charginos and neutralinos, squarks and light smuons – and of Xenon1T, thanks to its unprecedented sensitivity to spin-dependent cross-section off neutrons.  
  Address [Bertone, Gianfranco; Calore, Francesca; Weniger, Christoph] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1090 GL Amsterdam, Netherlands, Email: gf.bertone@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393286400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2951  
Permanent link to this record
 

 
Author Amoroso, S.; Caron, S.; Jueid, A.; Ruiz de Austri, R.; Skands, P. url  doi
openurl 
  Title Estimating QCD uncertainties in Monte Carlo event generators for gamma-ray dark matter searches Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 007 - 44pp  
  Keywords (up) dark matter simulations; dark matter theory; gamma ray theory  
  Abstract Motivated by the recent galactic center gamma-ray excess identified in the Fermi-LAT data, we perform a detailed study of QCD fragmentation uncertainties in the modeling of the energy spectra of gamma-rays from Dark-Matter (DM) annihilation. When Dark-Matter particles annihilate to coloured final states, either directly or via decays such as W(*) -> qq-', photons are produced from a complex sequence of shower, hadronisation and hadron decays. In phenomenological studies their energy spectra are typically computed using Monte Carlo event generators. These results have however intrinsic uncertainties due to the specific model used and the choice of model parameters, which are difficult to asses and which are typically neglected. We derive a new set of hadronisation parameters (tunes) for the PYTHIA 8.2 Monte Carlo generator from a fit to LEP and SLD data at the Z peak. For the first time we also derive a conservative set of uncertainties on the shower and hadronisation model parameters. Their impact on the gamma-ray energy spectra is evaluated and discussed for a range of DM masses and annihilation channels. The spectra and their uncertainties are also provided in tabulated form for future use. The fragmentation-parameter uncertainties may be useful for collider studies as well.  
  Address [Amoroso, Simone] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: simone.amoroso@desy.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467288200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4006  
Permanent link to this record
 

 
Author Caron, S.; Eckner, C.; Hendriks, L.; Johannesson, G.; Ruiz de Austri, R.; Zaharijas, G. url  doi
openurl 
  Title Mind the gap: the discrepancy between simulation and reality drives interpretations of the Galactic Center Excess Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 013 - 56pp  
  Keywords (up) dark matter simulations; gamma ray experiments; Machine learning; millisecond pulsars  
  Abstract The Galactic Center Excess (GCE) in GeV gamma rays has been debated for over a decade, with the possibility that it might be due to dark matter annihilation or undetected point sources such as millisecond pulsars (MSPs). This study investigates how the gamma-ray emission model (-yEM) used in Galactic center analyses affects the interpretation of the GCE's nature. To address this issue, we construct an ultra-fast and powerful inference pipeline based on convolutional Deep Ensemble Networks. We explore the two main competing hypotheses for the GCE using a set of-yEMs with increasing parametric freedom. We calculate the fractional contribution (fsrc) of a dim population of MSPs to the total luminosity of the GCE and analyze its dependence on the complexity of the ryEM. For the simplest ryEM, we obtain fsrc = 0.10 f 0.07, while the most complex model yields fsrc = 0.79 f 0.24. In conclusion, we find that the statement about the nature of the GCE (dark matter or not) strongly depends on the assumed ryEM. The quoted results for fsrc do not account for the additional uncertainty arising from the fact that the observed gamma-ray sky is out-of-distribution concerning the investigated ryEM iterations. We quantify the reality gap between our ryEMs using deep-learning-based One-Class Deep Support Vector Data Description networks, revealing that all employed ryEMs have gaps to reality. Our study casts doubt on the validity of previous conclusions regarding the GCE and dark matter, and underscores the urgent need to account for the reality gap and consider previously overlooked “out of domain” uncertainties in future interpretations.  
  Address [Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Theoret High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001025516000009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5576  
Permanent link to this record
 

 
Author Achterberg, A.; Amoroso, S.; Caron, S.; Hendriks, L.; Ruiz de Austri, R.; Weniger, C. url  doi
openurl 
  Title A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 006 - 27pp  
  Keywords (up) dark matter theory; dark matter simulations; dark matter experiments  
  Abstract Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84-92 GeV or 87-97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174-187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Omega h(2) < 0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.  
  Address [Achterberg, Abraham; Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Fac Sci, NL-6500 GL Nijmegen, Netherlands, Email: a.achterberg@astro.ru.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365046600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2455  
Permanent link to this record
 

 
Author Achterberg, A.; van Beekveld, M.; Caron, S.; Gomez-Vargas, G.A.; Hendriks, L.; Ruiz de Austri, R. url  doi
openurl 
  Title Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 040 - 23pp  
  Keywords (up) dark matter theory; galaxy morphology; cosmology of theories beyond the SM; dwarfs galaxies  
  Abstract The Fermi Collaboration has recently updated their analysis of gamma rays from the center of the Galaxy. They reconfirm the presence of an unexplained emission feature which is most prominent in the region of 1-10 GeV, known as the Galactic Center GeV excess (GCE). Although the GCE is now fi rmly detected, an interpretation of this emission as a signal of self-annihilating dark matter (DM) particles is not unambiguously possible due to systematic effects in the gamma-ray modeling estimated in the Galactic Plane. In this paper we build a covariance matrix, collecting different systematic uncertainties investigated in the Fermi Collaboration's paper that affect the GCE spectrum. We show that models where part of the GCE is due to annihilating DM is still consistent with the new data. We also re-evaluate the parameter space regions of the minimal supersymmetric Standard Model (MSSM) that can contribute dominantly to the GCE via neutralino DM annihilation. All recent constraints from DM direct detection experiments such as PICO, LUX, PandaX and Xenon1T, limits on the annihilation cross section from dwarf spheroidal galaxies and the Large Hadron Collider limits are considered in this analysis. Due to a slight shift in the energy spectrum of the GC excess with respect to the previous Fermi analysis, and the recent limits from direct detection experiments, we find a slightly shifted parameter region of the MSSM, compared to our previous analysis, that is consistent with the GCE. Neutralinos with a mass between 85-220 GeV can describe the excess via annihilation into a pair of W-bosons or top quarks. Remarkably, there are models with low fine-tuning among the regions that we have found. The complete set of solutions will be probed by upcoming direct detection experiments and with dedicated searches in the upcoming data of the Large Hadron Collider.  
  Address [Achterberg, Abraham; van Beekveld, Melissa; Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: a.achterberg@astro.ru.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000418922000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3439  
Permanent link to this record
 

 
Author Caron, S.; Gomez-Vargas, G.A.; Hendriks, L.; Ruiz de Austri, R. url  doi
openurl 
  Title Analyzing gamma rays of the Galactic Center with deep learning Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 058 - 24pp  
  Keywords (up) gamma ray experiments; dark matter simulations  
  Abstract We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV gamma rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include gamma rays created by the annihilation of dark matter particles and gamma rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured gamma ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of gamma ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.  
  Address [Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: scaron@cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432869300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3582  
Permanent link to this record
 

 
Author Stoppa, F.; Bhattacharyya, S.; Ruiz de Austri, R.; Vreeswijk, P.; Caron, S.; Zaharijas, G.; Bloemen, S.; Principe, G.; Malyshev, D.; Vodeb, V.; Groot, P.J.; Cator, E.; Nelemans, G. url  doi
openurl 
  Title AutoSourceID-Classifier Star-galaxy classification using a convolutional neural network with spatial information Type Journal Article
  Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 680 Issue Pages A109 - 16pp  
  Keywords (up) methods: data analysis; techniques: image processing; astronomical databases: miscellaneous; stars: imaging; Galaxies: statistics  
  Abstract Aims. Traditional star-galaxy classification techniques often rely on feature estimation from catalogs, a process susceptible to introducing inaccuracies, thereby potentially jeopardizing the classification's reliability. Certain galaxies, especially those not manifesting as extended sources, can be misclassified when their shape parameters and flux solely drive the inference. We aim to create a robust and accurate classification network for identifying stars and galaxies directly from astronomical images.Methods. The AutoSourceID-Classifier (ASID-C) algorithm developed for this work uses 32x32 pixel single filter band source cutouts generated by the previously developed AutoSourceID-Light (ASID-L) code. By leveraging convolutional neural networks (CNN) and additional information about the source position within the full-field image, ASID-C aims to accurately classify all stars and galaxies within a survey. Subsequently, we employed a modified Platt scaling calibration for the output of the CNN, ensuring that the derived probabilities were effectively calibrated, delivering precise and reliable results.Results. We show that ASID-C, trained on MeerLICHT telescope images and using the Dark Energy Camera Legacy Survey (DECaLS) morphological classification, is a robust classifier and outperforms similar codes such as SourceExtractor. To facilitate a rigorous comparison, we also trained an eXtreme Gradient Boosting (XGBoost) model on tabular features extracted by SourceExtractor. While this XGBoost model approaches ASID-C in performance metrics, it does not offer the computational efficiency and reduced error propagation inherent in ASID-C's direct image-based classification approach. ASID-C excels in low signal-to-noise ratio and crowded scenarios, potentially aiding in transient host identification and advancing deep-sky astronomy.  
  Address [Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Groot, P. J.; Nelemans, G.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: f.stoppa@astro.ru.nl  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131898100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5888  
Permanent link to this record
 

 
Author van Beekveld, M.; Caron, S.; Hendriks, L.; Jackson, P.; Leinweber, A.; Otten, S.; Patrick, R.; Ruiz de Austri, R.; Santoni, M.; White, M. url  doi
openurl 
  Title Combining outlier analysis algorithms to identify new physics at the LHC Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 024 - 33pp  
  Keywords (up) Phenomenological Models; Supersymmetry Phenomenology  
  Abstract The lack of evidence for new physics at the Large Hadron Collider so far has prompted the development of model-independent search techniques. In this study, we compare the anomaly scores of a variety of anomaly detection techniques: an isolation forest, a Gaussian mixture model, a static autoencoder, and a beta-variational autoencoder (VAE), where we define the reconstruction loss of the latter as a weighted combination of regression and classification terms. We apply these algorithms to the 4-vectors of simulated LHC data, but also investigate the performance when the non-VAE algorithms are applied to the latent space variables created by the VAE. In addition, we assess the performance when the anomaly scores of these algorithms are combined in various ways. Using supersymmetric benchmark points, we find that the logical AND combination of the anomaly scores yielded from algorithms trained in the latent space of the VAE is the most effective discriminator of all methods tested.  
  Address [van Beekveld, Melissa] Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, 20 Pks Rd, Oxford OX1 3PU, England, Email: mcbeekveld@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000695421600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4973  
Permanent link to this record
 

 
Author Caron, S.; Ruiz de Austri, R.; Zhang, Z.Y. url  doi
openurl 
  Title Mixture-of-Theories training: can we find new physics and anomalies better by mixing physical theories? Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 004 - 37pp  
  Keywords (up) Specific BSM Phenomenology; Supersymmetry  
  Abstract Model-independent search strategies have been increasingly proposed in recent years because on the one hand there has been no clear signal for new physics and on the other hand there is a lack of a highly probable and parameter-free extension of the standard model. For these reasons, there is no simple search target so far. In this work, we try to take a new direction and ask the question: bearing in mind that we have a large number of new physics theories that go beyond the Standard Model and may contain a grain of truth, can we improve our search strategy for unknown signals by using them “in combination”? In particular, we show that a signal hypothesis based on a large, intermingled set of many different theoretical signal models can be a superior approach to find an unknown BSM signal. Applied to a recent data challenge, we show that “mixture-of-theories training” outperforms strategies that optimize signal regions with a single BSM model as well as most unsupervised strategies. Applications of this work include anomaly detection and the definition of signal regions in the search for signals of new physics.  
  Address [Caron, Sascha; Zhang, Zhongyi] Radboud Univ Nijmegen, High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000943095100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5494  
Permanent link to this record
 

 
Author Strege, C.; Bertone, G.; Besjes, G.J.; Caron, S.; Ruiz de Austri, R.; Strubig, A.; Trotta, R. url  doi
openurl 
  Title Profile likelihood maps of a 15-dimensional MSSM Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 081 - 59pp  
  Keywords (up) Supersymmetry Phenomenology  
  Abstract We present statistically convergent profile likelihood maps obtained via global fits of a phenomenological Minimal Supersymmetric Standard Model with 15 free parameters (the MSSM-15), based on over 250M points. We derive constraints on the model parameters from direct detection limits on dark matter, the Planck relic density measurement and data from accelerator searches. We provide a detailed analysis of the rich phenomenology of this model, and determine the SUSY mass spectrum and dark matter properties that are preferred by current experimental constraints. We evaluate the impact of the measurement of the anomalous magnetic moment of the muon (g – 2) on our results, and provide an analysis of scenarios in which the lightest neutralino is a subdominant component of the dark matter. The MSSM-15 parameters are relatively weakly constrained by current data sets, with the exception of the parameters related to dark matter phenomenology (M-1, M-2, mu), which are restricted to the sub-TeV regime, mainly due to the relic density constraint. The mass of the lightest neutralino is found to be < 1.5TeV at 99% C.L., but can extend up to 3 TeV when excluding the g – 2 constraint from the analysis. Low-mass bino-like neutralinos are strongly favoured, with spin-independent scattering cross-sections extending to very small values, similar to 10(-20) pb. ATLAS SUSY null searches strongly impact on this mass range, and thus rule out a region of parameter space that is outside the reach of any current or future direct detection experiment. The best-fit point obtained after inclusion of all data corresponds to a squark mass of 2.3 TeV, a gluino mass of 2.1 TeV and a 130 GeV neutralino with a spin-independent cross-section of 2.4 x 10(-10) pb, which is within the reach of future multi-ton scale direct detection experiments and of the upcoming LHC run at increased centre-of-mass energy.  
  Address [Strege, C.; Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Imperial Ctr Inference & Cosmol, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342069700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1934  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva