|   | 
Details
   web
Records
Author Anderson, L. et al; de Putter, R.; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 427 Issue 4 Pages 3435-3467
Keywords (up) cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe
Abstract We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264 283 massive galaxies covering 3275 square degrees with an effective redshift z = 0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda CDM cosmological model, this sample covers an effective volume of 2.2 Gpc(3), and represents the largest sample of the Universe ever surveyed at this density, (n) over bar approximate to 3 x 10(-4) h(-3) Mpc(3). We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5 sigma in both the correlation function and power spectrum. Combining with the SDSS-II luminous red galaxy sample, the detection significance increases to 6.7 sigma. Fitting for the position of the acoustic features measures the distance to z = 0.57 relative to the sound horizon D-V/r(s) = 13.67 +/ 0.22 at z = 0.57. Assuming a fiducial sound horizon of 153.19 Mpc, which matches cosmic microwave background constraints, this corresponds to a distance D-V (z = 0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most precise distance constraint ever obtained from a galaxy survey. We place this result alongside previous BAO measurements in a cosmological distance ladder and find excellent agreement with the current supernova measurements. We use these distance measurements to constrain various cosmological models, finding continuing support for a flat Universe with a cosmological constant.
Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: nikhil.padmanabhan@yale.edu;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000314421000014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1319
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 441 Issue 1 Pages 24-62
Keywords (up) cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe
Abstract We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance A cold dark matter (ACDM) cosmological model, the DR11 sample covers a volume of 13 Gpc(3) and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density- field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7s in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, r(d), which has a value of r(d,fid) = 149.28 Mpc in our fiducial cosmology. We find D-V = (1264 +/- 25 Mpc)(r(d)/r(d,fid)) at z = 0.32 and D-V = (2056 +/- 20 Mpc)(r(d)/r(d,fid)) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of D-A = (1421 +/- 20 Mpc)(r(d)/r(d,fid)) and H = (96.8 +/- 3.4 kms(-1) Mpc(-1))(r(d),(fid)/r(d)). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.
Address [Anderson, Lauren; Bhardwaj, Vaishali] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000336249300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1791
Permanent link to this record
 

 
Author Giare, W.; Renzi, F.; Mena, O.; Di Valentino, E.; Melchiorri, A.
Title Is the Harrison-Zel'dovich spectrum coming back? ACT preference for n(s) similar to 1 and its discordance with Planck Type Journal Article
Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 521 Issue 2 Pages 2911-2918
Keywords (up) cosmological parameters; inflation; cosmology: observations; cosmology: theory
Abstract The Data Release 4 of the Atacama Cosmology Telescope (ACT) shows an agreement with an Harrison-Zel'dovich primordial spectrum (n(s) = 1.009 +/- 0.015), introducing a tension with a significance of 99.3 per cent Confidence Level (CL) with the results from the Planck satellite. The discrepancy on the value of the scalar spectral index is neither alleviated with the addition of large scale structure information nor with the low multipole polarization data. We discuss possible avenues to alleviate the tension relying on either neglecting polarization measurements from ACT or in extending different sectors of the theory.
Address [Giare, William] Ctr Nazl INFN Studi Avanzati, Galileo Galileo Inst Theoret Phys, Largo Enr Fermi 2, I-50125 Florence, Italy, Email: william.giare@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000957248500013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5510
Permanent link to this record
 

 
Author Vincent, A.C.; Scott, P.; Trampedach, R.
Title Light bosons in the photosphere and the solar abundance problem Type Journal Article
Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 432 Issue 4 Pages 3332-3339
Keywords (up) elementary particles; line: formation; Sun: abundances; Sun: atmosphere; cosmology: theory
Abstract Spectroscopy is used to measure the elemental abundances in the outer layers of the Sun, whereas helioseismology probes the interior. It is well known that current spectroscopic determinations of the chemical composition are starkly at odds with the metallicity implied by helioseismology. We investigate whether the discrepancy may be due to conversion of photons to a new light boson in the solar photosphere. We examine the impact of particles with axion-like interactions with the photon on the inferred photospheric abundances, showing that resonant axion-photon conversion is not possible in the region of the solar atmosphere in which line formation occurs. Although non-resonant conversion in the line-forming regions can in principle impact derived abundances, constraints from axion-photon conversion experiments rule out the couplings necessary for these effects to be detectable. We show that this extends to hidden photons and chameleons (which would exhibit similar phenomenological behaviour), ruling out known theories of new light bosons as photospheric solutions to the solar abundance problem.
Address [Vincent, A. C.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: vincent@ific.uv.es
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000321053500058 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1481
Permanent link to this record
 

 
Author Moline, A.; Sanchez-Conde, M.A.; Palomares-Ruiz, S.; Prada, F.
Title Characterization of subhalo structural properties and implications for dark matter annihilation signals Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 466 Issue 4 Pages 4974-4990
Keywords (up) galaxies: haloes; cosmology: theory; dark matter
Abstract A prediction of the standard Lambda cold dark matter cosmology is that dark matter (DM) haloes are teeming with numerous self-bound substructure or subhaloes. The precise properties of these subhaloes represent important probes of the underlying cosmological model. We use data from Via Lactea II and Exploring the Local Volume in Simulations N-body simulations to learn about the structure of subhaloes with masses 10(6)-10(11) h(-1) M circle dot. Thanks to a superb subhalo statistics, we study subhalo properties as a function of distance to host halo centre and subhalo mass, and provide a set of fits that accurately describe the subhalo structure. We also investigate the role of subhaloes on the search for DM annihilation. Previous work has shown that subhaloes are expected to boost the DM signal of their host haloes significantly. Yet, these works traditionally assumed that subhaloes exhibit similar structural properties than those of field haloes, while it is known that subhaloes are more concentrated. Building upon our N-body data analysis, we refine the substructure boost model of Sanchez-Conde & Prada (2014), and find boosts that are a factor 2-3 higher. We further refine the model to include unavoidable tidal stripping effects on the subhalo population. For field haloes, this introduces a moderate (similar to 20-30 per cent) suppression. Yet, for subhaloes like those hosting dwarf galaxy satellites, tidal stripping plays a critical role, the boost being at the level of a few tens of percent at most. We provide a parametrization of the boost for field haloes that can be safely applied over a wide halo mass range.
Address [Moline, Angeles] Univ Tecn Lisboa, CFTP, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: angeles.moline@gmail.com;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000402849400088 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3164
Permanent link to this record