|   | 
Details
   web
Records
Author Villanueva-Domingo, P.; Gnedin, N.Y.; Mena, O.
Title Warm Dark Matter and Cosmic Reionization Type Journal Article
Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 852 Issue 2 Pages 139 - 7pp
Keywords (up) cosmology: theory; galaxies: formation; intergalactic medium; large-scale structure of universe; methods: numerical
Abstract In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3. keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn-Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn-Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.
Address [Villanueva-Domingo, Pablo; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: gnedin@fnal.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000422865600009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3455
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.
Title Removing Astrophysics in 21 cm Maps with Neural Networks Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 907 Issue 1 Pages 44 - 14pp
Keywords (up) Cosmology; Cold dark matter; Dark matter; Dark matter distribution; H I line emission; Intergalactic medium; Cosmological evolution; Convolutional neural networks; Large-scale structure of the universe
Abstract Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: Pablo.Villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000612333400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4698
Permanent link to this record
 

 
Author Villaescusa-Navarro, F. et al; Villanueva-Domingo, P.
Title The CAMELS Project: Public Data Release Type Journal Article
Year 2023 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.
Volume 265 Issue 2 Pages 54 - 14pp
Keywords (up) Cosmology; Hydrodynamical simulations; Astrostatistics; Galaxy formation
Abstract The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lya spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N-body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at .
Address [Villaescusa-Navarro, Francisco; Genel, Shy; Angles-Alcazar, Daniel; Hassan, Sultan; Pisani, Alice; Wong, Kaze W. K.; Coulton, William R.; Steinwandel, Ulrich P.; Spergel, David N.; Burkhart, Blakesley; Wandelt, Benjamin; Somerville, Rachel S.; Bryan, Greg L.; Li, Yin] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA, Email: camel.simulations@gmail.com
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0067-0049 ISBN Medium
Area Expedition Conference
Notes WOS:000964876300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5525
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Ichiki, K.
Title 21 cm forest constraints on primordial black holes Type Journal Article
Year 2023 Publication Publications of the Astronomical Society of Japan Abbreviated Journal Publ. Astron. Soc. Jpn.
Volume 75 Issue SP1 Pages S33-S49
Keywords (up) dark matter; radio lines: ISM
Abstract Primordial black holes (PBHs) as part of the dark matter (DM) would modify the evolution of large-scale structures and the thermal history of the universe. Future 21 cm forest observations, sensitive to small scales and the thermal state of the intergalactic medium (IGM), could probe the existence of such PBHs. In this article, we show that the shot noise isocurvature mode on small scales induced by the presence of PBHs can enhance the amount of low-mass halos, or minihalos, and thus, the number of 21 cm absorption lines. However, if the mass of PBHs is as large as M-PBH greater than or similar to 10 M-circle dot, with an abundant enough fraction of PBHs as DM, f(PBH), the IGM heating due to accretion on to the PBHs counteracts the enhancement due to the isocurvature mode, reducing the number of absorption lines instead. The concurrence of both effects imprints distinctive signatures on the number of absorbers, allowing the abundance of PBHs to be bound. We compute the prospects for constraining PBHs with future 21 cm forest observations, finding achievable competitive upper limits on the abundance as low as f(PBH) similar to 10(-3) at M-PBH = 100 M-circle dot, or even lower at larger masses, in regions of the parameter space unexplored by current probes. The impact of astrophysical X-ray sources on the IGM temperature is also studied, which could potentially weaken the bounds.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: ichiki@a.phys.nagoya-u.ac.jp
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6264 ISBN Medium
Area Expedition Conference
Notes WOS:000768441900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5168
Permanent link to this record
 

 
Author Bernal, N.; Munoz-Albornoz, V.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title Current and future neutrino limits on the abundance of primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 068 - 38pp
Keywords (up) neutrino detectors; primordial black holes
Abstract Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of comet-mass PBHs could be derived from the null observation of this neutrino flux. Here, we consider non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data, as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (log-normal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.
Address [Bernal, Nicolas] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates, Email: nicolas.bernal@uan.edu.co;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000882783900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5412
Permanent link to this record