|   | 
Details
   web
Records
Author Leite, J.; Morales, A.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Scotogenic dark matter and Dirac neutrinos from unbroken gauged B – L symmetry Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 807 Issue Pages 135537 - 5pp
Keywords (up)
Abstract We propose a simple extension of the standard model where neutrinos get naturally small “scotogenic” Dirac masses from an unbroken gauged B – L symmetry, ensuring dark matter stability. The associated gauge boson gets mass through the Stueckelberg mechanism. Two scenarios are identified, and the resulting phenomenology briefly sketched.
Address [Leite, Julio; Valle, Jose W. F.] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Parc Cient Paterna,Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: julio.leite@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000571765700016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4545
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Simple theory for scotogenic dark matter with residual matter-parity Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 809 Issue Pages 135757 - 10pp
Keywords (up)
Abstract Dark matter stability can result from a residual matter-parity symmetry surviving spontaneous breaking of an extended gauge symmetry. We propose the simplest scotogenic dark matter completion of the original SVS theory [1], in which the “dark sector” particles as well as matter-parity find a natural theoretical origin within the model. We briefly comment on its main features.
Address [Hernandez, A. E. Carcamo] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110 5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000581871500057 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4601
Permanent link to this record
 

 
Author de Anda, F.J.; Medina, O.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Scotogenic Majorana neutrino masses in a predictive orbifold theory of flavor Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 5 Pages 055030 - 12pp
Keywords (up)
Abstract The use of extra space-time dimensions provides a promising approach to the flavor problem. The chosen compactification of a 6-dimensional orbifold implies a remnant family symmetry A4. This makes interesting predictions for quark and lepton masses, for neutrino oscillations and neutrinoless double beta decay, providing also a very good global description of all flavor observables. Due to an auxiliary Z4 symmetry, we implement a scotogenic Majorana neutrino mass generation mechanism with a viable WIMP dark matter candidate.
Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos, Jalisco, Mexico, Email: fran@tepaits.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000783936600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5202
Permanent link to this record
 

 
Author de Anda, F.J.; Medina, O.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Revamping Kaluza-Klein dark matter in an orbifold theory of flavor Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 3 Pages 035046 - 11pp
Keywords (up)
Abstract We suggest a common origin for dark matter, neutrino mass and family symmetry within the orbifold theory proposed in [Phys. Lett. B 801, 135195 (2020); Phys. Rev. D 101, 116012 (2020)]. Flavor physics is described by an A(4) family symmetry that results naturally from compactification. Weakly interacting massive particle dark matter emerges from the first Kaluza-Klein excitation of the same scalar that drives family symmetry breaking and neutrino masses through the inverse seesaw mechanism. In addition to the “golden” quark-lepton mass relation and predictions for 0 nu beta beta decay, the model provides a good global description of all flavor observables.
Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos 47600, Jalisco, Mexico, Email: fran@tepaits.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001162626800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5954
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Neutrino predictions from a left-right symmetric flavored extension of the standard model Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 065 - 24pp
Keywords (up) Beyond Standard Model; Discrete Symmetries; Neutrino Physics; Quark Masses and SM Parameters
Abstract We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.
Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000459168900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3917
Permanent link to this record