|   | 
Details
   web
Records
Author Sakai, S.; Oset, E.; Ramos, A.
Title Triangle singularities in B- -> K- pi- D(s0)+ and B- -> K- pi- D(s1)+ Type Journal Article
Year 2018 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 54 Issue 1 Pages 10 - 14pp
Keywords (up)
Abstract We study the appearance of structures in the decay of the B- into K-pi D--(s0)+ (2317) and K-pi D--(s1)+ (2460) final states by forming invariant mass distributions of pi D--(s0)+ and pi D--(s1)+ pairs, respectively. The structure in the distribution is associated to the kinematical triangle singularity that appears when the B- -> K- K*(0) D-0 (B- -> K- K*(0) D*(0)) decay process is followed by the decay of the K*(0) into pi(-) K+ and the subsequent rescattering of the K+ D-0 (K+ D*(0)) pair forming the D-s0(+) (2317) (D-s1(+) (2460)) resonance. We find this type of non-resonant peaks at 2850MeV in the invariant mass of pi D--(s0) pairs from B- -> K- pi(-) D-s0(+) (2317) decays and around 3000MeV in the invariant mass of pi D--(s1)+ pairs from B- -> K- pi(-) D-s1(+)(2460) decays. By employing the measured branching ratios of the B- -> K- K*(0) D-0 and B- -> K- K*(0) D*(0) decays, we predict the branching ratios for the processes B- into K-pi D--(s0)+ (2317) K-pi D--(s1)+ (2460), in the vicinity of the triangle singularity peak, to be about 8 x 10(-6) and 1 x 10(-6), respectively. The observation of this reaction would also give extra support to the molecular picture of the D-s0(+)(2317) and D-s1(+)(2460).
Address [Sakai, S.; Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: shuntaro.sakai@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000423446700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3462
Permanent link to this record
 

 
Author Martinez Torres, A.; Prelovsek, S.; Oset, E.; Ramos, A.
Title Effective Field Theories in a Finite Volume Type Journal Article
Year 2018 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.
Volume 59 Issue 6 Pages 139 - 5pp
Keywords (up)
Abstract In this talk I present the formalism we have used to analyze Lattice data on two meson systems by means of effective field theories. In particular I present the results obtained from a reanalysis of the lattice data on the KD(*()) systems, where the states D-s0*(2317) and D-s1*(2460) are found as bound states of KD and KD *, respectively. We confirm the presence of such states in the lattice data and determine the contribution of the KD channel in the wave function of D-s0*(2317) and that of KD* in the wave function of D-s1*(2460). Our findings indicate a large meson-meson component in the two cases.
Address [Martinez Torres, A.] Univ Sao Paulo, Inst Fis, Rua Matao 1371, BR-05508090 Sao Paulo, SP, Brazil, Email: amartine@if.usp.br
Corporate Author Thesis
Publisher Springer Wien Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-7963 ISBN Medium
Area Expedition Conference
Notes WOS:000448041400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3772
Permanent link to this record
 

 
Author Nada, A.; Ramos, A.
Title An analysis of systematic effects in finite size scaling studies using the gradient flow Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 1 Pages 1 - 19pp
Keywords (up)
Abstract We propose a new strategy for the determination of the step scaling function sigma (u) in finite size scaling studies using the gradient flow. In this approach the determination of sigma (u) is broken in two pieces: a change of the flow time at fixed physical size, and a change of the size of the system at fixed flow time. Using both perturbative arguments and a set of simulations in the pure gauge theory we show that this approach leads to a better control over the continuum extrapolations. Following this new proposal we determine the running coupling at high energies in the pure gauge theory and re-examine the determination of the Lambda -parameter, with special care on the perturbative truncation uncertainties.
Address [Nada, Alessandro] DESY, John von Neumann Inst Comp NIC, Platanenallee 6, D-15738 Zeuthen, Germany, Email: alberto.ramos@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000606481000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4678
Permanent link to this record
 

 
Author Hernandez, P.; Pena, C.; Ramos, A.; Gomez-Cadenas, J.J.
Title A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times Type Journal Article
Year 2021 Publication Plos One Abbreviated Journal PLoS One
Volume 16 Issue 2 Pages e0244107 - 22pp
Keywords (up)
Abstract The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.
Address [Hernandez, Pilar] Univ Valencia, Dept Fis Teor, Valencia, Spain, Email: m.pilar.hernandez@uv.es
Corporate Author Thesis
Publisher Public Library Science Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes WOS:000616739700053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4750
Permanent link to this record
 

 
Author Albandea, D.; Hernandez, P.; Ramos, A.; Romero-Lopez, F.
Title Topological sampling through windings Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 10 Pages 873 - 12pp
Keywords (up)
Abstract We propose a modification of the Hybrid Monte Carlo (HMC) algorithm that overcomes the topological freezing of a two-dimensional U(1) gauge theory with and without fermion content. This algorithm includes reversible jumps between topological sectors – winding steps – combined with standard HMC steps. The full algorithm is referred to as winding HMC (wHMC), and it shows an improved behaviour of the autocorrelation time towards the continuum limit. We find excellent agreement between the wHMC estimates of the plaquette and topological susceptibility and the analytical predictions in the U(1) pure gauge theory, which are known even at finite beta. We also study the expectation values in fixed topological sectors using both HMC and wHMC, with and without fermions. Even when topology is frozen in HMC – leading to significant deviations in topological as well as non-topological quantities – the two algorithms agree on the fixed-topology averages. Finally, we briefly compare the wHMC algorithm results to those obtained with master-field simulations of size L similar to 8 x 10(3).
Address [Albandea, David; Hernandez, Pilar; Ramos, Alberto; Romero-Lopez, Fernando] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: David.Albandea@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000703880600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4979
Permanent link to this record