Bombacigno, F., De Angelis, M., van de Bruck, C., & Giare, W. (2025). Inflation in non-local hybrid metric-Palatini gravity. J. Cosmol. Astropart. Phys., 05(5), 025–30pp.
Abstract: Within the framework of hybrid metric-Palatini gravity, we incorporate non-localities introduced via the inverse of the d'Alembert operators acting on the scalar curvature. We analyze the dynamical structure of the theory and, adopting a scalar-tensor perspective, assess the stability conditions to ensure the absence of ghost instabilities. Focusing on a special class of well-defined hybrid actions where local and non-local contributions are carried by distinct types of curvature we investigate the feasibility of inflation within the resulting Einstein-frame multi-field scenario. We examine how the non-minimal kinetic couplings between the fields, reflecting the non-local structure of the original frame, influence the number of e-folds and the field trajectories. To clarify the physical interpretation of our results, we draw analogies with benchmark single-field inflation scenarios that include spectator fields.
|
Guerrero, M., Olmo, G. J., Rubiera-Garcia, D., & Saez-Chillon Gomez, D. (2021). Shadows and optical appearance of black bounces illuminated by a thin accretion disk. J. Cosmol. Astropart. Phys., 08(8), 036–19pp.
Abstract: We study the light rings and shadows of an uniparametric family of spherically symmetric geometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We consider the ray-tracing method in order to study the impact parameter regions corresponding to the direct, lensed, and photon ring emissions, finding a broadening of all these regions for black bounce solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of black bounces when illuminated by three standard toy models of optically and geometrically thin accretion disks viewed in face-on orientation.
|
Boudet, S., Bombacigno, F., Moretti, F., & Olmo, G. J. (2023). Torsional birefringence in metric-affine Chern-Simons gravity: gravitational waves in late-time cosmology. J. Cosmol. Astropart. Phys., 01(1), 026–28pp.
Abstract: In the context of the metric-affine Chern-Simons gravity endowed with projective invariance, we derive analytical solutions for torsion and nonmetricity in the homogeneous and isotropic cosmological case, described by a flat Friedmann-Robertson-Walker metric. We discuss in some details the general properties of the cosmological solutions in the presence of a perfect fluid, such as the dynamical stability and the emergence of big bounce points, and we examine the structure of some specific solutions reproducing de Sitter and power law behaviours for the scale factor. Then, we focus on first-order perturbations in the de Sitter scenario, and we study the propagation of gravitational waves in the adiabatic limit, looking at tensor and scalar polarizations. In particular, we find that metric tensor modes couple to torsion tensor components, leading to the appearance, as in the metric version of Chern-Simons gravity, of birefringence, characterized by different dispersion relations for the left and right circularized polarization states. As a result, the purely tensor part of torsion propagates like a wave, while nonmetricity decouples and behaves like a harmonic oscillator. Finally, we discuss scalar modes, outlining as they decay exponentially in time and do not propagate.
|
Bombacigno, F., Moretti, F., Boudet, S., & Olmo, G. J. (2023). Landau damping for gravitational waves in parity-violating theories. J. Cosmol. Astropart. Phys., 02(2), 009–29pp.
Abstract: We discuss how tensor polarizations of gravitational waves can suffer Landau damping in the presence of velocity birefringence, when parity symmetry is explicitly broken. In particular, we analyze the role of the Nieh-Yan and Chern-Simons terms in modified theories of gravity, showing how the gravitational perturbation in collisionless media can be characterized by a subluminal phase velocity, circumventing the well-known results of General Relativity and allowing for the appearance of the kinematic damping. We investigate in detail the connection between the thermodynamic properties of the medium, such as temperature and mass of the particles interacting with the gravitational wave, and the parameters ruling the parity violating terms of the models. In this respect, we outline how the dispersion relations can give rise in each model to different regions of the wavenumber space, where the phase velocity is subluminal, superluminal or does not exist. Quantitative estimates on the considered models indicate that the phenomenon of Landau damping is not detectable given the sensitivity of present-day instruments.
|
Delhom, A., Mariz, T., Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2022). Spontaneous Lorentz symmetry breaking and one-loop effective action in the metric-affine bumblebee gravity. J. Cosmol. Astropart. Phys., 07(7), 018–27pp.
Abstract: The metric-affine bumblebee model in the presence of fermionic matter minimally coupled to the connection is studied. We show that the model admits an Einstein frame representation in which the matter sector is described by a non-minimal Dirac action without any analogy in the literature. Such non-minimal terms involve unconventional couplings between the bumblebee and the fermion field. We then rewrite the quadratic fermion action in the Einstein frame in the basis of 16 Dirac matrices in order to identify the coefficients for Lorentz/CPT violation in all orders of the non-minimal coupling xi. The exact result for the fermionic determinant in the Einstein frame, including all orders in xi, is also provided. We demonstrate that the axial contributions are at least of second order in the perturbative expansion of xi. Furthermore, we compute the one-loop effective potential within the weak field approximation.
|
Magalhaes, R. B., Ribeiro, G. P., Lima, H. C. D. J., Olmo, G. J., & Crispino, L. C. B. (2024). Singular space-times with bounded algebraic curvature scalars. J. Cosmol. Astropart. Phys., 05(5), 114–34pp.
Abstract: We show that the absence of unbounded algebraic curvature invariants constructed from polynomials of the Riemann tensor cannot guarantee the absence of strong singularities. As a consequence, it is not sufficient to rely solely on the analysis of such scalars to assess the regularity of a given space-time. This conclusion follows from the analysis of incomplete geodesics within the internal region of asymmetric wormholes supported by scalar matter which arise in two distinct metric-affine gravity theories. These wormholes have bounded algebraic curvature scalars everywhere, which highlights that their finiteness does not prevent the emergence of pathologies (singularities) in the geodesic structure of space-time. By analyzing the tidal forces in the internal wormhole region, we find that the angular components are unbounded along incomplete radial time-like geodesics. The strength of the singularity is determined by the evolution of Jacobi fields along such geodesics, finding that it is of strong type, as volume elements are torn apart as the singularity is approached. Lastly, and for completeness, we consider the wormhole of the quadratic Palatini theory and present an analysis of the tidal forces in the entire space-time.
|
Creminelli, P., Norena, J., Pena, M., & Simonovic, M. (2012). Khronon inflation. J. Cosmol. Astropart. Phys., 11(11), 032–16pp.
Abstract: We study the possibility that the approximate time shift symmetry during inflation is promoted to the full invariance under time reparametrization t -> (t) over tilde (t), or equivalently under field redefinition of the inflaton phi -> (phi) over tilde(phi). The symmetry allows only two operators at leading order in derivatives, so that all n-point functions of scalar perturbations are fixed in terms of the power spectrum normalization and the speed of sound. During inflation the decaying mode only decays as 1/a and this opens up the possibility to violate some of the consistency relations in the squeezed limit, although this violation is suppressed by the (small) breaking of the field reparametrization symmetry. In particular one can get terms in the 3-point function that are only suppressed by 1/k(L) in the squeezed limit k(L) -> 0 compared to the local shape.
|
Beltran Jimenez, J., Heisenberg, L., & Olmo, G. J. (2014). Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-lnfeld. J. Cosmol. Astropart. Phys., 11(11), 004–26pp.
Abstract: We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.
|
Girones, Z., Marchetti, A., Mena, O., Pena-Garay, C., & Rius, N. (2010). Cosmological data analysis of f(R) gravity models. J. Cosmol. Astropart. Phys., 11(11), 004–18pp.
Abstract: A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.
|
Cervantes-Cota, J. L., de Putter, R., & Linder, E. V. (2010). Induced gravity and the attractor dynamics of dark energy/dark matter. J. Cosmol. Astropart. Phys., 12(12), 019–20pp.
Abstract: Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.
|